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Classifier & Discriminant Function

® Discriminant function g(x) i=1,...,C
m Classifier

x o6 if g)>g,w Oj#i
m Example

g:(x) = p(a; | x)

g:(x)=plx|w )p(w)

gi(x)=In p(x[@)+In p(@)

The choice of D-function is not unique
® Decision boundary

Multivariate Gaussian

p(x)~N(u,2)

*

Tt 4

principal axes

X
v' The principal axes (the direction) are given by the eigenvectors of 2;

v' The length of the axes (the uncertainty) is given by the eigenvalues of 2
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Mahalanobis Distance

Q Xl

|| X —H ||2>|| X, —H ||2

| X —H ||M:|| X, —H ||M

Mahalanobis distance is 2 normalized distance

Ix=clly=+/(x— )" 7 (x— 1)

Whitening

m Whitening:
— Find a linear transformation (rotation and
scaling) such that the covariance becomes an

identity matrix (i.e., the uncertainty for each
component is the same)

. Y2
| ()
x, > Vi

p(x) ~ N(LL 2) p(y) ~N(ATH, ATY.A)

1
solution : A=U"AN 2 where X =U'AU
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Disc. Func. for Gaussian

B Minimum-error-rate classifier

g(x)=Inp(x|a;)+In p(a,)

g,(x) = —%(x—m)Tzzl(x—ﬂi)—%lnzn—%ln 1%, [ +1n p(e)

Case I: 2. = 0%

Il x =y, ||2 1 /T T T
AX =——‘+ln w.)=— xx*.-2 x+ . +1Il .
g:(x) o7 P(@)=~——3 [ pl o+ gl ]+ n p(e)
constant

1Y 1
gi(x) = _(F/'IIJ x +(_ 202 ,UiT,U'f'lnp(a)i)J

—_ T . . . . .
=Wix+W, Liner discriminant function

Boundary: g, (x)=g, = W'(x-x,)=0 where
W:/’[i_/jj
XOZE(/,IZ.'F/JJ)— - lnﬁ((z));))(ﬂi_/'l_/)

Nl =421
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Example

m Assume p(0)=p(w)

H Tl
(K, _ﬂj)T|:x_Tjj|

Let’s derive the decision boundary:

=0

Case II: 2= 2.

g (x)==2(x— ) T (x— ) +In p(w)

D g ()= (7 @) x+ (-1l 27 g+ In p(w)
=W, x+W,

The decision boundary is still linear:
W' (x-x,)=0 where
W=2"(u- ;)
In p(@) ~In p(w))
(4, _/'I_j)Tz_l/Ji _/1_;)

1
Xo :5(/'{[ +:uj)_

(K= 1))
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Case III; Zi: arbitrary

g, (x)=x"Ax+W x+W, where
A4 =-13"
W.=Z ',
Wi = =34 2 t; =3In| Z, | +In p(a)

The decision boundary is no longer linear, but hyperquadrics!

Bayesian Learning

m [earning means “training”

W ic., estimating some unknowns from
“training data”

m WHY?
— It is very difficult to specify these unknowns

— Hopetully, these unknowns can be recovered
from examples collected.
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Maximum Likelihood Estimation

m Collected examples D={x,x,,...,X_}

m HEstimate unknown parameters 0 in the sense
that the data likelihood is maximized

m Likelihood p(D|6)= ﬂ p(x,10)
m Log Likelithood )
L(@)=Inp(D|6)= Zln p(x, 16)

. . k=1
m MIL. estimation

@ =argmax p(D|6) =argmax L(D | 6)
o o

Case I: unknown U
In p(x, | 1) = L[ |2 [1=L(x, = ) 7 (x, = )

alnp((xk |#) :z—l(x
ou g

n _ R . 1 n
Zzl(xk—,u):O e H=—2.%
k=1 n

k=1

—H)
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Case II: unknown M and >,

In p(x, | (4, 0) ==L In2m - (x, —p)*  letA=0>

Oinp |18 L, ) S L - =0
ou ‘ = A
alnp('xk |/J’A) :_7_'_ (xk_l’l)2 + (xk 'LI)
oA 2A 2N ZA ;
R 1 n . . l n
H==)> x, generalize f1 =—Zxk
|:> n =1 N =1
T . N N .
02:A2:;Z(xk_lu)2 Z:;Z(xk_,u)(xk_,u)T
k=1 k=1

Bayesian Estimation

m Collected examples D={x,,x,,...,X}, drawn
independently from a fixed but unknown distribution
P&

m Bayesian learning is to use D to determine p(x| D), i.e.,
to learn a p.d.f.

B p(x) is unknown, but has a parametric form with
parameters 6 ~ p(0)

m Difference from ML: in Bayesian learning, 8 is not a
value, but a random variable and we need to recover
the distribution of 0, rather than a single value.
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Bayesian Estimation

p(x| D)= [ p(x,6| D)d6 = [ p(x|6) p(6| D)dO

m This is obvious from the total probability rule, i.e.,
p(x|D) is a weighted average over all 0

m If p(@ | D) peaks very sharply about some value 67,
then p(x| D) ~ p(x| 8)

The Univariate Case

m assume M is the only unknown, p(x | )~N(U, G%)

m |l is a r.v., assuming a prior p(H) ~ N(, Op?), i-e., K
is the best guess of W, and O, is the uncertainty of it.

p(u| DY p(D| 1) p(p) = ﬂ (s, | 10 p(1)

where  p(x | f)~N(.0%),  p()~ N(H,,07)
P(,U\D) a exp[-%((ﬁ+g;ozj’u2 _2(#;)% +Uy_:2)'u:|

P(K|D) is also a Gaussian for any # of training examples

10
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The Univariate Case

if welet p(u|D)~N(u,,o?)

we have

na, 02 N o’ The best guess for U after

= -0 ) .
H, 2 5 | 2 5 |Ho  observing n examples
ng, +o ng, +o
2
o2 = g,0 ? O, measures the uncertainty of this guess
" 0.02 p after observing n examples
P(HIX s - -5X,) n=30

p(U/D) becomes more and
more sharply peaked when
observing more and more
examples, i.e., the uncertainty

2
decreases. , O
g -

H "

The Multivariate Case

p(x| )~ N(u,2) P ~ N(ly,2,)
let p(u|D)~N(u,,2,), wehave
U, =5, (5, +15) 1, + L5, + 1) 4,
5, =5,(5,+15)" Lz
where [1, :lek

R =

and  p(x| D)= p(x| )p(u| D)dpt ~ N(4,, Z+X,)

11
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PCA and Eigenface

v Principal Component Analysis (PCA)

v Eigenface for Face Recognition

PCA: motivation

m Pattern vectors are generally confined within
some low-dimensional subspaces
m Recall the basic idea of the Fourier transform

— A signal is (de)composed of a linear combination of
a set of basis signal with different frequencies.

12
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PCA: idea

xX=m+aqe

J(a,,...,qa, e = ZH (m+ae)-x, |

=1
=2 a; el 22 ae’ (x, —m)+> ||x, —m|’
oJ

=2a, =2 (x, —-m)=0 = a,=e (x,—m)
k

PCA

Je)=> a; =2 a; +> ||x, —m]|’
==e" Y (x, —m)(x, —~m) e+ |, —m|]
=—eSe+Y |k, —m|]

argminJ(e) =argmaxe' Se st |e|=1

e =argmaxe' Se+A(e’e—1)
Se—Je :VO, ie, € Se=1

To maximize e'Se, we need to select A,
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Algorithm

m [ earning the principal components from {x;,

Xpy «ovy X )

1 m :lek, A=[x—m,...x, —m]
n =

@) $=3(x, ~m)(x, —m)' = A44"
k=1
(3) eigenvalue decomposition S =U"3U
(4) sorting A, and u,
5) P"o=[uul, . ul]

m

PCA for Face Recognition

m Training data D={x,, ..., x}
— Dimension (stacking the pixels together to make a vector of

dimension N)

— Preprocessing
v cropping

v normalization
m These faces should lie in a “face” subspace
® Questions:
— What is the dimension of this subspace?
— How to identify this subspace?

— How to use it for recognition?

14
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Eigenface

Pixel 3

The EigenFace approach: M. Turk and A. Pentland, 1992

An Issue

m In general, N >> M
m However, S, the covariance matrix, is NxN!
m Difficulties:

— S is ill-conditioned. Rank(S)<<N

— The computation of the eigenvalue decomposition
of S is expensive when N is large

m Solution?

15
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Solution I;

m Let’s do eigenvalue decomposition on ATA,
which 1s 2 MxM matrix

m ATAv=Av

m 2> AATAv= AAv

m To see is clearly! (AAT) (Av)= A(Av)

m ic., if v is an eigenvector of ATA, then Av is

the eigenvector of AAT corresponding to the
same eigenvalue!

m Note: of course, you need to normalize Av to
make it a unit vector

Solution 11:

® You can simply use SVD (singular value
decomposition)

B A= [xm, ..., Xm]
mA=0U2VT
— A: NxM

—U:NxM UTUu=I
— > MxM diagonal
—V: MxM VIV=VVT=]

16
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Fisher Linear Discrimination

v LDA
v PCA+LDA for Face Recognition

When does PCA fail?

17
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Linear Discriminant Analysis

m Finding an optimal linear mapping W

m Catches major difference between classes and
discount irrelevant factors

m In the mapped space, data are clustered

Within/between class scatters

m="3x, =

ny x0p, Ny 20,

the linear transform: y=W"x

1
~ T, — T ~ T
ml——ZW x=W'm, m,=W ' m,

nl x0D,
S, = 2 (x=m)x=m)", S, = Y (x=my)(x=m,)’
+0D, x0D,
§,=X (- =wisw, 8= (-, =wsy
g DA

within class scatter: S, =S, +5,

between class scatter: S, = (m, —m,)(m, —m,)"

1R
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Fisher LDA

JW) = | ﬁ| _nN/lz |2 — WT(ml _mz)(ml _mz)TW — WTSBW
S, +8S, W (S, +S,)W w's,w

W =argmax J(W)
w

max J(W) = SBW = ASWW « thisis a generalized eigenvalue problem

Solution |

m [f S is not singular

S, S,w=Aw

® You can simply do eigenvalue decomposition
on Sy 'Sy

190
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Solution I1

m Noticing:
— SgW is on the direction of m;-m, (WHY?)
— We are only concern about the direction of the
projection, rather than the scale

m We have

w= Sv;l(ml —m,)

Multiple Discriminant Analysis

1 P S I
= i y= m;,
" n, @Z,;‘ x, n; oy,
—_ T C
S, =Y mm)x=m)” YEWE Gzl g
x0D; n =
C S —qT
5, =3, S, =w'Ss, W,
- - C
= 8, = n (@, - )i, - )" =W'S W
k=1
|Sg| _ WS, |

W™ =argmax -— -
o Sy | WS, W

> S,w, =AS,w,

20
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Comparing PCA and LDA
)
o o )
© o O .
o o /’ [ ]
o' e ®
o) . o OO /’/, .. ..
0o ©° o °
LDA o, e [ ) ° o

MDA for Face Recognition

l Lighting

* PCA does not work well! (why?)
* solution: PCA+MDA

71
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Independent Component Analysis

v The cross-talk problem
v ICA

(t)

2(t

Cocktail party

x,(t)

Mr\ DA

Can you recover
X,(t) s;(t) and s,(t) from
2 X,(1), X,(t) and
X;(t)?
\ X3(t)

k)
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Formulation

x; =ays, to.ta,s, LU

X:Zaisl. or X=A4S§
i=l

Both A and S are unknowns!

Can you recover both A and S from X?

The Idea

Y=W'X=w"4aS=27"S

y is a linear combination of {s;}

Recall the central limit theory!

A sum of even two independent r.v. is more
Gaussian than the original r.v.

So, 7S should be more Gaussian than any of {s,}

In other words, ZTS become least Gaussian when in
fact equal to {s;}

B Amazed!

72
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Face Recognition: Challenges

View

24
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