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Recognizing Faces?

Lighting

View
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Outline

Bayesian Classification
Principal Component Analysis (PCA)
Fisher Linear Discriminant Analysis (LDA)
Independent Component Analysis (ICA)

Bayesian Classification

Classifier & Discriminant Function
Discriminant Function for Gaussian 
Bayesian Learning and Estimation
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Classifier & Discriminant Function

Discriminant function gi(x)  i=1,…,C
Classifier

Example

Decision boundary
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The choice of D-function is not unique

Multivariate Gaussian 

),(~)( ∑µNxp

principal axes

The principal axes (the direction) are given by the eigenvectors of ∑; 

The length of the axes (the uncertainty) is given by the eigenvalues of ∑

x1

x2
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Mahalanobis Distance

Mahalanobis distance is a normalized distance

µ

x1

x2
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Whitening

Whitening: 
– Find a linear transformation (rotation and 

scaling) such that the covariance becomes an 
identity matrix (i.e., the uncertainty for each 
component is the same)

y1

y2

x1

x2

y=ATx

p(x) ~ N(µ, ∑) p(y) ~ N(ATµ, AT∑A)
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Disc. Func. for Gaussian

Minimum-error-rate classifier
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Case I:   ∑i = σ2I
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Liner discriminant function

Boundary: 
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Example

Assume p(ωi)=p(ωj)

µi

µj

Let’s derive the decision boundary:
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Case II:   ∑i= ∑

)(ln)()()( 1
2
1

ii
T

ii pxxxg ωµµ +−Σ−−= −

0

1
2
11 ))(ln()()(

i
T

i

ii
T
i

T
ii

WxW

pxxg

+=

+Σ−+Σ= −− ωµµµ

)(
))(

)(ln)(ln
)(

2
1

)(

     where0)(

10

1
0

ji
ji

T
ji

ji
ji

ji

T

pp
x

W

xxW

µµ
µµµµ

ωω
µµ

µµ

−
−Σ−

−
−+=

−Σ=

=−

−

−

The decision boundary is still linear:
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Case III:   ∑i= arbitrary
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The decision boundary is no longer linear, but hyperquadrics!

Bayesian Learning

Learning means “training”
i.e., estimating some unknowns from 
“training data”
WHY?
– It is very difficult to specify these unknowns
– Hopefully, these unknowns can be recovered 

from examples collected.
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Maximum Likelihood Estimation

Collected examples D={x1,x2,…,xn}
Estimate unknown parameters θ in the sense 
that the data likelihood is maximized
Likelihood
Log Likelihood

ML estimation
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Case II:  unknown µ and ∑
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generalize

Bayesian Estimation

Collected examples D={x1,x2,…,xn}, drawn 
independently from a fixed but unknown distribution 
p(x)
Bayesian learning is to use D to determine p(x|D), i.e., 
to learn a p.d.f.
p(x) is unknown, but has a parametric form with 
parameters θ ~ p(θ)
Difference from ML: in Bayesian learning, θ is not a 
value, but a random variable and we need to recover 
the distribution of θ, rather than a single value.
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Bayesian Estimation

This is obvious from the total probability rule, i.e., 
p(x|D) is a weighted average over all θ
If p(θ |D) peaks very sharply about some value θ*, 
then p(x|D) ~ p(x| θ*)

∫ ∫== θθθθθ dDpxpdDxpDxp )|()|()|,()|(

The Univariate Case

assume µ is the only unknown, p(x|µ)~N(µ, σ2)
µ is a r.v., assuming a prior p(µ) ~ N(µ0, σ0

2), i.e., µ0
is the best guess of µ, and σ0 is the uncertainty of it. 
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P(µ|D) is also a Gaussian for any # of training examples
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The Univariate Case
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observing n examples

σn measures the uncertainty of this guess 
after observing n examples

n=1

n=5

n=10
n=30

µ

p(µ|x1,…,xn) p(µ|D) becomes more and 
more sharply peaked when 
observing more and more 
examples, i.e., the uncertainty 
decreases.
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PCA and Eigenface

Principal Component Analysis (PCA)
Eigenface for Face Recognition  

PCA: motivation

Pattern vectors are generally confined within 
some low-dimensional subspaces
Recall the basic idea of the Fourier transform
– A signal is (de)composed of a linear combination of 

a set of basis signal with different frequencies.
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PCA: idea
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Algorithm

Learning the principal components from {x1, 
x2, …, xn}
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PCA for Face Recognition

Training data D={x1, …, xM}
– Dimension (stacking the pixels together to make a vector of 

dimension N)
– Preprocessing

cropping
normalization

These faces should lie in a “face” subspace
Questions:
– What is the dimension of this subspace?
– How to identify this subspace?
– How to use it for recognition?
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Eigenface

The EigenFace approach: M. Turk and A. Pentland, 1992

An Issue

In general, N >> M
However, S, the covariance matrix, is NxN!
Difficulties:
– S is ill-conditioned. Rank(S)<<N
– The computation of the eigenvalue decomposition 

of S is expensive when N is large
Solution?
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Solution I:

Let’s do eigenvalue decomposition on ATA, 
which is a MxM matrix
ATAv=λv

AATAv= λAv
To see is clearly! (AAT) (Av)= λ(Av)
i.e., if v is an eigenvector of ATA, then Av is 
the eigenvector of AAT corresponding to the 
same eigenvalue!
Note: of course, you need to normalize Av to 
make it a unit vector

Solution II:

You can simply use SVD (singular value 
decomposition)
A = [x1-m, …, xM-m]
A = U∑VT

– A: NxM
– U: NxM    UTU=I
– ∑: MxM    diagonal 
– V: MxM   VTV=VVT=I
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Fisher Linear Discrimination

LDA
PCA+LDA for Face Recognition

When does PCA fail?

PCA
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Linear Discriminant Analysis

Finding an optimal linear mapping WFinding an optimal linear mapping W

Catches major difference between classes and Catches major difference between classes and 
discount irrelevant factorsdiscount irrelevant factors

In the mapped space, data are clusteredIn the mapped space, data are clustered

Within/between class scatters
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Fisher LDA
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Solution I

If Sw is not singular

You can simply do eigenvalue decomposition 
on SW
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Solution II

Noticing:
– SBW is on the direction of m1-m2 (WHY?)
– We are only concern about the direction of the 

projection, rather than the scale
We have
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Multiple Discriminant Analysis
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Comparing PCA and LDA

PCA

LDA

MDA for Face Recognition

Lighting

• PCA does not work well! (why?)

• solution: PCA+MDA
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Independent Component Analysis

The cross-talk problem
ICA  

Cocktail party

t

S1(t)

S2(t)

t

t

x1(t)

t

x2(t)

t

x3(t)

A

Can you recover 
s1(t) and s2(t) from 
x1(t), x2(t) and 
x3(t)?
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Formulation
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Both A and S are unknowns!

Can you recover both A and S from X?

The Idea

y is a linear combination of {si}
Recall the central limit theory!
A sum of even two independent r.v. is more 
Gaussian than the original r.v.
So, ZTS should be more Gaussian than any of {si}
In other words, ZTS become least Gaussian when in 
fact equal to {si}
Amazed!

SZASWXWY TTT ===
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Face Recognition: Challenges

View
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