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Warm up ...

m Given a directed graphical model
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m Prove
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Wake up !

m Given a HMM: p(Z;| X)) and p(X,| X, )
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Interesting problems (1)

m Super-resolution
— Given a low-res image, can you recover a high-res image?

— To make it feasible, you may be given a set of training
pairs of low-res and high-res images.




Interesting problems (ii)

m Capturing body motion from video

— Given a video sequence, you need to estimate the
articulated body motion from the video.

Outline

m Markov network representation

m Three issues
— Inferring hidden variables
— Calculating evidence
— Learning Markov networks
m Inference
— Exact inference
— Approximate inference
m Applications
— Super-resolution

— Capturing body articulation




Representations

m Undirected graphical models

— G(V,E), v €V represents a random variable x, e
eE indicate the relation of two random variables;

— Each r.v. x; has a prior y;(x));

— Each undirected link (between x;and x)) is
associated with a pofential function \y;(x;, X);

— veV, N(v) means the neighborhood of v;

m We can combine undirected and directed

graphical models.
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p(Z|X) = [ [ pilzilxi).
i=1




Three 1ssues

m Inferring hidden variables
— Given a Markov network A
— To infer the hidden variable of the evidence p(X|Z, A)

m Calculating evidence
— Given a Markov network A
— To calculate the likelihood of the evidence p(Z]| A)

m [ earning Markov networks
— Given a set of training data {Z,,...,Z_}

n
— To find the best model A =argmax H P(Z, [A)
A k=1

To be covered

m The inference problem is the key among the three
— Why?

— Let’s discuss ...

m We will focus on inference in this lecture
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An example

Xg

m Given the above model, with
= Pz %), Wi(x)
- “VlZ(Xl’XZ)’ “VZS(XZ’XZ%)’ W34(X3’X4)’ W45(X4’X5)’ W46(X4’X6>

m To solve

— P(X3|21,20,23,2.4575,7)
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An example
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What do we learn from the Ex.?
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What do we learn from the Ex.?

P(X;i|Z) oy (X))
x p(z; | %;)
X H M (%)
keN (i)
posterior oc local prior
x local likelihood
x messages received from neighbors
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Sum-Product Algorithm

Mki(xi)zj P(Z, | X)W (X )w i (Xcs %) HMjk(Xk) dx,

X jeN (K)\i

N

Xy ) Vi (Xi, Xp) O X;

Message passing

Zk|:|

15

Properties

m Properties of “belief propagation”
— When the network is not loopy, the algorithm is exact;

— When the network is loopy, the inference can be done by
iterating the message passing procedures;

— In this case, the inference is not exact,

— and it is not clear how good is the approximation.
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Application: Super-resolution

m Bill Freeman (ICCV’99)
— X: high-frequency data
— Z: mid-frequency data
— “scene”: the high-frequency components
— “evidence”: the mid-freq of the low-res image input

— The “scene” is decomposed by a network of scene
patches; and each scene patch is associated with an
evidence patch

— Learning p(z|x) from training samples

:i . - . . . . . . scene patch

o
rj E ! : - . . ' . . evidence patch
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Results (Freeman)

actual high-res

| actual high-freq

Iteration of B.P. to obtain
high-frequency data

Recovered
high-res image
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Results (Freeman)

Training
data
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Variational Inference

m We want to infer  p(x;|Z)

m It is difficult, because of the networked structure.

m We perform probabilistic variational analysis

m The idea is to find an optimal approximation ¢*(X) of

p(X|Z) | such that the Kullback-Leibler (KL) divergence
of these two distribution is minimized:

¢ (X) = argmin KL(¢(X]||p(X|Z))
q

= argmin/g(X) log

q
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Mean Field Theory

m When we choose a full factorization variation:
M
q(X) = H%‘(X:)
i
m We end up with a very interesting result: a set of fixed point
equations:

qi(Xi) — Zl,f)z'(Zz|Xz')‘i"-‘i(Xi)AUz (%), where

M) el [ oo los vt

ReN ()"

® This is very similar to the Mean Field theory in statistical physics.
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Computational Paradigm
-r'/neighborhood prior
.. local prior
local likelihood
m Three factors affect the posterior of a node:
— Local prior
— Neighborhood prior
— Local likelihood
22

11



Application: body tracking

m Capturing body articulation (Wu et al.)
— X: the motion of body parts
— Z: image features (e.g., edges)
— The motion of body parts are constrained and
correlated

— Specifying y(x;,x)
— modeling p(z | x) explicitly
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Dynamic Markov Network

1
Qi (X)) = ?Pz‘(zz.r|xz.t) x [p(xi.f|Xi.t71)qi.t71(xz‘)
7 .

x exp{ Z / Gt (X5 ) log abin (X ¢, Xp 1) }
Sy

ReN (i) 7 Tkt
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Mean Field Iterations

m We are still investigating the convergence property of mean field algorithms

®m But our empirical study shows that it converges very fast, generally, less than
five iterations.
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Application: body tracking

26
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Application: body tracking
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Summary

m Markov networks contain undirected edges in the
graph to model the non-casual correlation
m Inference is the key of analyzing Markov networks
— Exact inference
— Approximate inference
® Two inference techniques were introduced here:
— Belief propagation
— Variational inference
m Two applications
— Super-resolution

— Capturing articulated body motion
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