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1 Getting Start — Background Subtraction

In many video surveillance applications, cameras are fixed and we are interested in tracking
the motion of the foreground, which could be people or cars. Obviously, frame difference
only gives us a rough idea of which regions may contain moving objects, but such a simple
method can neither sperate the foreground from the background, nor tell us which image
regions are moving regions. As a result, doing simple frame differencing will not output good
tracking results.

Background subtraction is such a technique that the foreground region can be separated
from background by maintaining a background model, and classifying each pixel into either
foreground and background. The assumption here is that the camera is more or less fixed
such that we can maintain or train a background model. Generally, such background model
can be pixel-wise, i.e., each pixel is modeled independently. For each image pixel location,
we compare the input image pixel and its background model and determine its class. A
simple approach just uses a mean image as the background, those pixels which deviate
from the corresponding background pixels beyond a threshold could be taken as foreground
pixels. More sophisticatedly, background model can be trained by taking a sequence of the
background, and difference methods can be use to represent the background model:

1. Mean: For each pixel, a mean pixel is used to represent the background, i.e., the
background at time t is B(z,y). To check if an input pixel I(z,y) is a foreground pixel
or not, we just check |I(x,y) — B(z,y)| > T or not.

2. Mean & Covariance: For each pixel, a Gaussian can be used to model the distribution
of such pixel, i.e., the model for a background pixel is represented by a mean pixel
B(z,y) and its covariance C(x,y). To check an input pixel I(z,y), the Mahalanobis
distance is used, i.e., a foreground pixel satisfies:

[](ZL‘,y) - B(:L’,y)]TC_1<l’,y)[I(ZE,y> - B<$»y)] >T.

3. Mixture of Gaussian: For each pixel, instead of using a Gaussian, a mixture of
Gaussian can also be used, since the pixel distribution could have multiple peaks.
For example, if the background contains a computer screen, whose images will have
a periodical moving strips, obviously, the distribution of the background pixel is not
uni-peak. Such mixture of Gaussian model can capture such scenario very well.

4. Temporal Deviation: Since the computation of the mixture of Gaussian model is a
bit intensive, the temporal deviation model has a simple representation. For each pixel,
we maintain its minimum M (z,y), its maximum N(x,y), and the largest interframe
absolute difference D(z,y). A foreground input pixel I(z,y) will satisfy |M(z,y) —
I(z,y)] > D(x,y) or |[N(x,y) — I(z,y)| > D(z,y).

5. Linear Prediction: Linear prediction model employs a Wiener filter to model the
temporal pattern for each pixel, i.e.,

P
Bi(z,y) = — Z axBi_k(z,y).
k=1
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It uses its previous P frame to predict the current frame of background, this model is
able to adapt to changing lighting. Once we estimate the parameters for these Wiener
filters, the background subtraction is quite straightforward and computational efficient.

Obviously, background subtraction is not tracking. But in many application scenarios,
especially those with camera fixed, background subtraction provide the first step for tracking
and tracking initialization.

2 Template Matching

Matching is an important issue in tracking, although matching is not equivalent to tracking.
In this section, we are going to see some definition of matching criteria, i.e., in what sense
we say they are matched, and a direct method to determine matching.

2.1 SSD and Cross-Correlation

Assume an image template is T'(x, y), and an input image is I(z,y) and which has the same
size as T'(z,y).
SSD is short for sum-of-squared-difference, i.e.,

A match is found by finding the candidate that minimizing the above SSD. It is easy to show
that minimizing SSD is equivalent to maximizing the cross-correlation, i.e.,

C=> "> IyT(xy) (2)

Here comes a problem, when a candidate contains the exact the same image pattern as the
template but the image intensity is totally different from the template, e.g., either brighter or
darker, the SSD measurement would still be quite big. To avoid such a problem, normalized
cross-correlation is introduced:

Yo 2l y) — [T, y) — T

v y) — 1.
VIZ 2, U y) = DRI, 3, (T(,y) - T)?)

(3)

2.2 Search vs. Descent

2.2.1 Search

Based on SSD or cross-correlation, a simple tracking method is based on matching. For
example, if we want to track an image feature point, say an eye corner, what we do first is
construct an image template for such a feature point by cropping a small template window
around this point. Then for an input image at time ¢, we define a search window. For any
pixel inside the search window, we crop an observation image which has the same size as the



image template, and calculate SSD. The point with least SSD is treated as the match, and
we say the feature point moves to this location at time ¢. A trick for tracking is that we can
update the template with time.

Apparently, the computation of such a simple search scheme depends on the search
window, or the number of candidates we need to calculate SSD. The question we should ask
is that whether there is an efficient way if we have a motion model in mind.

2.2.2 The Direct Method

Let’s have a look at an example in which we assume the motion is only translation. Let
I(x,y,7) is the image at time ¢ and I(x,y,0) is the image template, and [u,v] is the dis-
placement such that

I(z,y,0) =I(z +u,y+v,7),¥(x,y) € R

which means that the pixels inside a region R of image I(x,y,7) at time ¢ are the same as
the template under a displacement. The problem is how we can solve such a displacement
given two images. This problem can be formulated as:

mmDuv ZZ (r+u,y+v,71)— 1(907%0)]2

We write the Taylor series of I(z + w,y + v, 7) at the point I(z,y,0):

ol 0 ol 0 ol 0
Iz +uy+v7)=1(z,y,0) + (:;;Ey’ )u~|— (:;,yy, )"U + <%’ty’ )7' + O(t%)
Let % =1, %;,,0) = I, 61(2’5”0) = I; and ignore high order terms, we can rewrite
D(u,v) as:

V) =Y (Lu+ I+ Lr)’
x oy

So, find the derivatives:

Vb - [

x

y([ru + L+ L)1, _0
yLou+ Lyo + L)1,

Simple manipulation gives:
2 L) [u] 1.1
x|k B -2l
T Yy z Yy

So, the solution is given by:

(ol H) (k) e

2 LI,
1.1, Iy2
I(x,y,0), I; is image difference, and this equation gives a closed form solution for the match-

ing problem.

From this equation, the term ) Z { ] is calculated only from the template



Above illustrates a general idea of find a matching based on gradient descent, if we have a
motion model in mind. Obviously, we can assume other motion model, such as pure rotation,
Euclidean, and affine. The same derivation could be taken to find closed form solutions in
these cases.

3 Two Philosophies

Until now, we have some sense of tracking, but we have not given a clear definition of
tracking. I won’t give a strict definition of tracking until next section. In this section, we
shall discuss what we want to track and what are the general philosophies to approach this
problem.

In previous section, what we talked about are tracking the location of an object. But
tracking is far more than just location tracking. We also need to know the size, orientation,
shape and 3D pose of the target, sometimes, even deformation and articulation, which we
call target states. For example, in some cases, we need to track some feature points or some
geometric primitives such as lines and curves. Other cases need to track a shape or contour,
e.g., face tracking. When we want to estimate 3D information, we need to infer 3D poses of
the object. When we want to determine human motion, we need to know the articulation
and deformation of human. However, such target states are not directly observable, i.e., they
are hidden variables. So, roughly speaking, tracking is to infer some hidden states of moving
object based on image sequences.

3.1 Bottom-up Approach

Bottom-up and top-down approaches are two kinds of methodologies to approach the visual
tracking problem. Bottom-up approaches generally tend to construct object states by analyz-
ing the content of images. Basically, many segmentation-based methods can be categorized
as bottom-up approaches. For example, blob tracking techniques group similar image pixels
into blobs to estimate the positions and shapes of the target.

3.2 Top-down Approach

On the contrary, top-down approaches generate candidate hypotheses from previous time
frame based on a parametric representation of the target. Tracking is achieved by measuring
and verifying these hypotheses against image observations. Many model-based and template-
matching methods can be categorized as top-down approaches. Bottom-up methods could
be efficient, yet the robustness is largely limited by the ability of image analysis. On the
other hand, top-down approaches depend less on image analysis, but their performances are
largely determined by hypotheses generating and verification.

Bottom-up methods might be computationally efficient, yet the robustness is largely
limited by the ability of image analysis, because the processing of grouping or tracing image
pixels could be overwhelmed by image clutters. On the other hand, top-down approaches
depend less on image analysis because the target hypotheses serve as strong constraints for
analyzing images. But the performances of the top-down approaches are largely determined



by the methods of generating and verifying hypotheses. To achieve robust tracking, a large
number of hypotheses may be maintained so that more computation would be involved for
measuring them. The combination of these two methodologies could keep the robustness
but reduce the computation.

4 A Probabilistic Framework

4.1 What is Tracking?

In this section, we shall formulate the visual tracking problem in a probabilistic framework.
The integration of multiple cues could be characterized by a factorized graphical model, in
which we make use of the variational analysis to approximate the inference task.

In a dynamic system, the states of the target and image observations are represented
by X; and Z;, respectively. The history of states and measurements are denoted by X, =
(X1,...,Xy) and Z, = (Zy,...,Z;). The tracking problem could be formulated as an infer-
ence problem with the prior p(X;,1]|Z,), which is a prediction density. We have

p(XH-l‘Zt—&—l) X p<Zt+1‘Xt+1)p(Xt+l|Zt) (5)
(X2, = / P(Xpr[X)p(X1]Z,)dX, (6)

where p(Z;,1|X441) represents the measurement or observation likelihood, and p(X,,1|X;) is
the dynamic model.

The probabilistic formulation of the tracking problem could be represented by graphical
models in Figure 1, which is similar to the hidden Markov model [18]. At time ¢, the
observation Z, is independent of previous states X, ; and previous observations Z,_,, given
current state Xy, i.e., p(Z;|X,, Z, ;) = p(Z4|X;), and the states have Markov property, i.e.,

p(Xe| X)) = p(Xe|Xi1).
() () (o

Figure 1: The tracking problem could be represented by a graphical model, similar to the
hidden Markov model.

The tracking problem can be approached by the inference techniques in the graphical
model.

4.2 Four Elements in Tracking

Visual tracking techniques generally have four elements: target representation, observation
representation, hypotheses generating, and hypotheses measurement, which roughly charac-
terize tracking performances and limitations.



To discriminate the target from other objects, the target representation — which could
include different modalities such as shape, geometry, motion, and appearance — character-
izes the target in a state space either explicitly or implicitly. Although how to find the target
representation is a fundamental problem in computer vision, visual tracking research gen-
erally employs concise representations to facilitate computational efficiency. For example,
parameterized shapes [12, 10] and color distributions [19, 26, 6, 23] are often employed as
target representations. To provide a more constrained description of the target, some meth-
ods employ both shape and color [25, 1, 12, 24, 2, 20]. Obviously, unique characterization
of the target would be quite helpful to visual tracking, but in general it would involve high
dimensionality. To add uniqueness in the target representation, many methods even employ
the target’s appearance, such as image templates [9, 13, 22| or eigenspace representation [3],
as the target representation. For example, if you know a person, it would be a bit easier to
track this person in a crowd. Sometimes motion could also be taken into account in target
representations, since different objects can be discriminated by the differences of their mo-
tions. On the other hand, if two objects share the same representation, it would be difficult
to correctly track either of them when they are close in the state space, if there are no priors
from the dynamics of the targets’ movements.

Closely related to the target representation, the observation representation defines the
image evidence of the object representation, i.e., the image features observed in the images.
For example, if the target is represented by its contour shape, we expect to observe edges of
the contour in the image. If the target is characterized by its color appearance, certain color
distribution patterns in the images could be used as the observation of the target.

The hypotheses measurement evaluates the matching between target state hypotheses
and their image observations. Sometime, we will measure with how much probability the
state hypotheses will generate such image observations. Similarly, the question we often ask
is that, given a certain image observation, which hypothesis will be most likely to produce
such an image observation. In many cases, we cannot obtain exact probability measurements,
but we can approximate them by pseudo-probabilities. For example, the template-matching
tracking method often takes SSD as the measurement. The fewer the SSD measurement, the
higher the probability of the hypothesis. The evaluation would be quite challenging when
measuring a shape hypothesis against a cluttered background. Although some analytical
results were reported in [4], many current tracking methods take ad hoc measurements.

The hypotheses generating is to produce new state hypotheses based on old estimation
of target’s representation and old observation, which implies the evolution of the dynamic
process. The target’s dynamics could be embedded in such a predicting process. At a certain
time instant, the target state is a random variable. The a posteriori probability distribution
of the target state, given the history of observations, changes with time. Therefore, the
tracking problem can be viewed as a problem of conditional probability density propagation.
The estimation of the target state at a certain time instance could be approximated by
estimating the conditional probability density of it. The hypotheses generating basically
describes the evolution of such posterior density or some of its statistics. The Kalman filtering
technique gives a classical example of hypotheses generating under Gaussian assumptions,
due to which the density could be characterized by its mean and covariance. In this case,
hypotheses generating characterizes the search range and confidence level of the tracking. If
the Gaussian assumption does not hold, which is often the case in tracking against cluttered
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backgrounds, we could represent the posterior density of the target state by a nonparametric
form. In this circumstance, the hypotheses generating could be viewed as a process of the
evolution of a set of hypotheses or state samples or particles, which facilitates a Monte Carlo
approach to tracking. The CONDENSATION [4] algorithm is one such example.

4.3 An example of Observation Model

It is crucial to have an accurate shape observation in tracking. Our implementation takes a
similar approach used in [4]. Edge detection is performed in 1-D along the normal lines of
the hypothesized shapes, shown in Figure 2. Thus, observation reduces to a set of scalar
positions z = (z1,...,2p), due to the presence of clutter. The true observation Z could be
any one of them. So,

p(z]x) = gp(z|clutter) + Zp(z]x, Z=2zn)P(Z=2,)

m=1

where x is the point on the shape contour and ¢ =1 — )" P(Z = z,). When we assume
that any true observation is unbiased and normally distributed with standard deviation o,
P(Z = z,,) = p for all z,,, and the clutter is a Poisson process with density A, then,

(z|x)o<1+;ZeX (o) (7)
b V2mog\ S P 202

Edge
Observation
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T
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Shape Hypothesis

Figure 2: Shape observation and measurement.

4.4 Tracking as Probability Propagation

From Equation 6 and Equation 6, it is very clear that tracking can be viewed as the proba-
bility density propagation from p(X;|Z,) to p(Xi1|Z,,,). When everything is Gaussian, we
can use mean and covariance to parameterized those densities, and the probability density
propagation becomes the updating of such parameters. The Kalman filtering technique is
such a way to estimate a set of optimal probabilistic parameters, which will be described



in the next section. Naturally, we shall ask what if not everything is Gaussian? The as-
sumption for Kalman filtering will not be held. What should we do? We shall introduce a
nonparametric sampling approach, i.e., the Sequential Monte Carlo techniques, at the end
of this lecture.

To understand this point, the paper by Isard and Blake [10] is very worth reading.

5 Kalman Filtering

5.1 Kalman Filtering for Linear Dynamic Systems

A dynamic system can be represented by a set of differential equations, e.g.,

For example, the dynamics of constant velocity motion is:

dz
¢ = z(t) + —
z(t+ 1) x()+dt7

Let S = [ﬂ , we have,

Generally, by introducing the state vector S, a dynamic systems can be represented by:

Si+1 = HlSZ+nl (8)
yi = F;S;+n; (9)
where
E[l’ll] = O, E[Ilil’li] = Qi; E[ninj] = 0,
E[m] = 07 E[nini] = Ai? E[Umj] = 07

Kalman filtering is a prediction-correction procedure:

e Prediction of State Vector:

Si\i—l = Hiflsifl

e Prediction of State Covariance:

Pjji—1 = H, P, H |, +Q,



e Kalman Gain:

K; =P F] (FPy 1 F +A;)"!
e Correction of State Vector:
Si = Si|z’71 + Ki(yi — FiSi\ifl)
e Correction of State Covariance:
P;=(I-KF;)Py;

There are some important points to obtain a good understanding of Kalman Filtering:
<& It is easy to show that the Kalman Gain can also be written by:
K; =P, F/A;?

This implies that when the estimation is confident (i.e., P; is small), or the observations
are not confident (i.e., A; is big), the Kalman gain will be small, which means that
it is better not to adjust the estimation of the state vector; on the other hand, if the
estimation is not confident (i.e., P; is big), or the observations are confident (i.e., A;
is small), the Kalman innovation, i.e., y; — Figi”,l, will contain critical information,
and we need to use large Kalman gain to update the state vector.

<& After some mathematical manipulation, we have:

-1 -1 T A -1
This equation is quite interesting: it means that when the observation applies, i.e., after
the correction step, the confidence of the estimation of state vector increases, since P;
will always be smaller than P;,;_;. It implies that the observation will contribute to
the error reducing.

5.2 Example: Tracking Feature Point

Below is an example of Kalman filtering: we want to track a point location in video sequences.
Let assume that through template matching, we can obtain observations of such a point in
images, i.e., at any time instant, we can detect a location y; = [z,y|T, where [z, y] are image
coordinates. Obviously, such detected locations through template matching could be quite
noisy. What we want to do is to estimate the true locations of the point, such that the
tracking can be made more stable. Although important issue here is that Kalman filter
can provide a certain predictions, which will largely reduce the search range for template
matching.

Here, since the video capturing rate is 30Hz, we can assume the time interval between
two consecutive frames is 33ms, i.e., let 7 = 33. We assume the dynamic model is a constant
velocity motion model, so, the state vector

1 0

O = O

0
0
0

o O =



Figure 3 shows an example of Kalman filtering, in which the ground truth of the point

350 350 350

a00 -
//

) &/?{/g;s

o 50 100 150 200 250 300 350 o

Figure 3: An example of Kalman filtering.

movement is a constant velocity motion. The truth locations are represented by "*’s. We use
"+’s to represent the observations, i.e., the measurements of the point in images, and ’o’s the
estimated locations by Kalman filtering. Figure 3(a) shows the x-y plot, i.e., the trajectory
of the point; Figure 3(b) shows the x-t plot, and Figure 3(c) shows the y-t plot. From these
figures, we can see that the measurements are quite noisy.

T Y To Yo T g
20 20 30.6599  40.6570 9.3354 12.3793
30 30 8.9595 37.2423 11.7539  26.8315
40 40 39.2643 15.4473 27.0391 26.2632
50 50 44.4980  46.7913 39.2416  39.2492
60 60 38.3285  20.9157 43.7964  35.8081
70 70 51.8103  69.8884 51.6990  52.7601
80 80 45.5302  105.2615 54.3529  77.0825
90 90 77.9913  48.7215 67.0309  74.3303
100 100 102.2182  129.7523 83.7473  98.0150
110 110 111.0600 113.2396 98.5564  110.2223
120 120 119.4624 123.4715 111.8412  121.9352
130 130 147.6434  133.6459 129.6134 133.2564
140 140 155.1059  150.1607 145.1032  146.0370
150 150 152.6376  155.6021 156.0213  156.9505
160 160 140.3430 141.1183 160.5396  160.9462
170 170 169.7388  177.0869 170.9846 172.7870
180 180 162.1058  196.2422 176.5518 186.7463
190 190 192.1907 244.6329 188.0920 210.2524
200 200 208.2216  173.8628 200.9893 210.0129
210 210 217.6761  219.9901 213.2579  220.6773
220 220 209.7843  224.6984 220.3365 229.7289
230 230 218.0435 230.4154 227.3068 237.6911
240 240 248.3889  263.8221 240.1309  252.1379
250 250 265.4243 197.1156 254.4077  245.4367
260 260 265.7086 276.5219 265.3985  259.7380
270 270 269.8376  287.1688 274.5736  273.7378
280 280 295.4958  306.1189 287.9503  289.5938
290 290 314.6301  309.1713 303.1626  302.7000
300 300 266.9090 280.1921 302.0697 304.8545
310 310 323.7047  290.5026 314.9902  308.1957

where [z,y] are the ground truth, [z,,y,] are observations, and[z,¢] are the estimation of
Kalman filter. We can see from the figures and data that Kalman filter gave a quite reason-
able result.

Homework: you can use the same set of data to play with a Kalman filter. You can use
different settings.
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6 Sequential Monte Carlo

As described in previous sections, the visual tracking problem could be formulated in a prob-
abilistic framework by representing tracking as a process of conditional probability density
propagation. Denote the target state and observation at time ¢ as X; and Z;, respectively,
and X, ={Xy,..., X}, Z, ={Z1,...,Z;}. The tracking problem is formulated as

P(Xiq1|Z; 1) o< p(Zyr | Xig1)p(Xig1|Z,) (10)

Although closed-form solutions of dynamic systems are generally intractable for many cases,
Monte Carlo methods offer a way to approximate the inference and to characterize the
evolution of the dynamic systems.

In statistics, sampling techniques are widely used to approximate a complex probability
density. Sequential Monte Carlo methods for dynamic systems are also studied in the area
of statistics [8, 14, 15]. A set of weighted random samples {(s™,7(")},n = 1,... N is
properly weighted with respect to the distribution f(X) if for any integrable function A(-),

= Er(h(X)) (11)

In this sense, the distribution f(X) is approximated by a set of discrete random samples
s(™  each having a probability proportional to its weight 7. Since the a posteriori density

p(X;|Z,) is represented by a set of weighted random samples {(s\™, 7{™)}, such a sample

set will evolve into a new sample set {(s\”), "))} representing the posterior p(Xi41/Z;.,)
at time ¢t 4+ 1. In this sense, tracking could be characterized by the evolution of such a set of

weighted samples in the state space.

6.1 Factored Sampling

To represent the a posteriori density p(X;|Z,), a set of random samples {Xﬁ”), n=1,...,N}

could be drawn from a prior p(X;|Z,_;), and weighted by their measurements, i.e., ™ =

p(ZX; = X§”>), such that the a posteriori density p(X;|Z,) is represented by a set of
weighted random samples {s\"), 7(™}. This sampling scheme is called factored sampling in
statistics. It could be shown that such a sample set is properly weighted. This sample set will
evolve to a new sample set at time ¢ + 1 and the new sample set {s,ﬁﬂ, Wﬁ)l} represents the
a posteriori density p(Xy41|Z,,,) at time ¢t 4+ 1. This is the sequential Monte Carlo method
employed in the CONDENSATION algorithm [4, 10, 11].

CONDENSATION achieved quite robust tracking results. The robustness of Monte Carlo
tracking is due to the maintaining of a pool of hypotheses. Since each hypothesis needs to
be measured and associated with a likelihood value, the computational cost mainly comes
from the image measurement processes. Generally, the more the samples, the better the
chance to obtain accurate tracking results, but the slower the tracking speed. Consequently,
the number of samples becomes an important factor in Monte Carlo based tracking, since it
determines the tracking accuracy and speed. Unfortunately, when the dimensionality of the
state space increases, the number of samples increases exponentially.
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This phenomenon has been observed, and different methods have been taken to reduce
the number of samples. A semiparametric approach was taken in [5], which retained only
the modes (or peaks) of the probability density and represented the local neighborhood sur-
rounding each mode as a Gaussian distribution. This approach eliminated the need for a
large number of samples for representing the distribution around each mode nonparametri-
cally. Different sampling techniques were also investigated to reduce the number of samples.
In [17], a partitioned sampling scheme was proposed to track articulated objects. It was
basically a hierarchical method to generate the hypotheses. A similar approach was taken
in [21] to track multiple objects. In [7], an annealed particle filtering scheme was taken
to search the global maximum of the a posteriori probability density. In [16], an exclusion
scheme was proposed to approach the occlusion problem in multiple target tracking.

6.2 Importance Sampling

In practice, it might be difficult to draw random samples from the distribution f(X). Sam-
ples could be drawn from another distribution g(X), but their weights should be properly
adjusted. This is the basic idea of the technique importance sampling. When samples s
are drawn from g(X), but weights are compensated as

(n)
) — f(s >7~r(n)
g(st™)
then it can be proved that the sample set {s("), W(”)} is still properly weighted with respect
to f(X). This is illustrated in Figure 4.

f(X)

.
‘ N
~
~
N
N
N
N
~
N
N
N
~
Py
@

Figure 4: Importance sampling. Samples that are drawn from another distribution g(X) but
with adjusted weights could still be used to represent density f(X).

To employ the importance sampling technique in dynamic systems, we need to let
ft(XE”)) = p(X; = XE")@H), where f;(-) is the tracking prior, i.e., a prediction density.
So, when we want to approximate the posterior p(X;|Z), we could draw random samples
from another distribution g;(X;), instead of the prior density f;(X;). But the sample weights
should be compensated as

w_ FXY "
= I g%, Xy (12)

g(X{")
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To evaluate f;(X;), we have
fX) = p(Xe = X[V1Z, )

N
n k
= Zﬂt 1p(Xy = Ig )’thl = Xi(f—)l)
k=1

To approximate a posterior p(X;|Z,), instead of sampling directly from the prior p(X,|Z,_,),
samples s could be drawn from another source g,(X;), and the weight of each sample is

m" = §t§s< ; (24X, = 5{") (13)

where fy(s\™) = p(X, = s{™|Z,_,). We should notice here that in order to sample from

g:(X,) instead of f,(X;), both f(s"™) and g;(s"") should be evaluatable. The importance
sampling technique is an important part in the proposed co-inference tracking in [27]. A
dynamic system could be formulated in a probabilistic framework, and sampling techniques
could be used to approximate probabilistic inferences.

References

[1] Y. Azoz, L. Devi, and R. Sharma. Reliable tracking of human arm dynamics by multiple
cue integration and constraint fusion. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, pages 905-910, Santa Barbara, California, June 1998.

[2] Stan Birchfield. Ellitical head tracking using intensity gradient and color histograms. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition, pages 232237, Santa
Barbara, California, June 1998.

[3] Michael Black and Allan Jepson. FEigentracking: Robust matching and tracking of
articulated object using a view-based representation. In Proc. European Conf. Computer
Vision, volume 1, pages 343-356, Cambridge, UK, 1996.

[4] Andrew Blake and Michael Isard. Active Contours. Springer-Verlag, London, 1998.

[5] Tat-Jen Cham and James Rehg. A multiple hypothesis approach to figure tracking.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition, volume 2, pages
239-244, 1999.

[6] Dorin Comaniciu, Visvanathan Ramesh, and Peter Meer. Real-time tracking of non-
rigid objects using mean shift. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, volume II, pages 142-149, Hilton Head Island, South Carolina, 2000.

[7] Jon Deutscher, Andrew Blake, and Ian Reid. Articulated body motion capture by an-
nealed particle filtering. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition, volume II, pages 126-133, Hilton Head Island, South Carolina, 2000.

14



8]

[9]

[10]

[13]

[14]

[15]

[16]

Arnaud Doucet, S. J. Godsill, and C. Andrieu. On sequential Monte Carlo sampling
methods for Bayesian filtering. Statistics and Computing, 10:197-208, 2000.

Greg Hager and Peter Belhumeur. Real-time tracking of image regions with changes
in geoemtry and illumination. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition, pages 403—410, San Francisco, CA, 1996.

Michael Isard and Andrew Blake. Contour tracking by stochastic propagation of condi-
tional density. In Proc. of European Conf. on Computer Vision, pages 343-356, Cam-
bridge, UK, 1996.

Michael Isard and Andrew Blake. CONDENSATION — conditional density propagation
for visual tracking. Int’l Journal of Computer Vision, 29:5-28, 1998.

Michael Isard and Andrew Blake. ICONDENSATION: Unifying low-level and high-level
tracking in a stochastic framework. In Proc. of Furopean Conf. on Computer Vision,
volume 1, pages 767781, Freiburg, Germany, June 1998.

Baoxin Li and Rama Chellapa. Simultaneous tracking and verification via sequential
posterior estimation. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
volume II, pages 110-117, Hilton Head Island, South Carolina, 2000.

Jun Liu and Rong Chen. Sequential Monte Carlo methods for dynamic systems. J.
Amer. Statist. Assoc., 93:1032—-1044, 1998.

Jun Liu, Rong Chen, and Tanya Logvinenko. A theoretical framework for sequential
importance sampling and resampling. In A. Doucet, N. de Freitas, and N. Gordon,
editors, Sequential Monte Carlo in Practice. Springer-Verlag, New York, 2000.

John MacCormick and Andrew Blake. A probabilistic exclusion principle for tracking
multiple objects. In Proc. IEEE Int’l Conf. on Computer Vision, pages 572-578, Greece,
1999.

John MacCormick and Michael Isard. Partitioned sampling, articulated objects, and
interface-quality hand tracking. In Proc. of European Conf. on Computer Vision, vol-
ume 2, pages 3-19, 2000.

L. Rabiner. A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE, T7:257-286, 1989.

Y. Raja, S. McKenna, and S. Gong. Colour model selection and adaptation in dynamic
scenes. In Proc. of European Conf. on Computer Vision, pages 460-475, Freiburg,
Germany, June 1998.

Christopher Rasmussen and Greg Hager. Joint probabilistic techniques for tracking
multi-part objects. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
pages 16-21, Santa Barbara, CA, June 1998.

15



[21]

Hai Tao, Harpreet Sawhney, and Rakesh Kumar. A sampling algorithm for detecting
and tracking multiple objects. In Proc. ICCV’99 Workshop on Vision Algorithm, Corfu,
Greece, 1999.

Hai Tao, Harpreet Sawhney, and Rakesh Kumar. Dynamic layer representation with
applications to tracking. In Proc. IEEE Conf. on Computer Vision and Pattern Recog-
nition, volume 2, pages 134-141, 2000.

Kentaro Toyama, John Krumm, Barry Brumitt, and Brain Meyers. Wallflower: Princi-
ples and practice of background maintenance. In Proc. IEEE Int’l Conf. on Computer
Vision, pages 255261, Korfu, Greece, 1999.

Kentaro Toyama and Ying Wu. Bootstrap initialization of nonparametric texture models
for tracking. In Proc. of Furopean Conf. on Computer Vision, Irland, 2000.

C. Wren, A. Azarbayejani, T. Darrel, and A. Pentland. Pfinder: Real-time tracking of
the human body. IEEFE Trans. on Pattern Analysis and Machine Intelligence, 9:780-785,
July 1997.

Ying Wu and Thomas S. Huang. Color tracking by transductive learning. In Proc.
IEEE Conf. on Computer Vision and Pattern Recognition, volume I, pages 133-138,
Hilton Head Island, South Carolina, June 2000.

Ying Wu and Thomas S. Huang. Robust visual tracking by co-inference learning. In
Proc. IEEFE Int’l Conf. on Computer Vision, volume II, pages 26-33, Vancouver, July
2001.

16



