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Example: Hidden Coin Tossing
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Tossing Two Biased Coins

» Two biased coins (C; and ()

» Person A is selecting the coin and tossing it

» Person B is the observer, and is recording the sequence of H/T

» The selection of the coin is a secrete to B (hidden)

» At a certain time instance t, we have two random variables:
» x; indicates which coin that is chosen (C; or ()
» z indicates the toss (H or T)

» The probabilities are

P(Xt‘Xt—l) ‘ G G P(Zt|Xt) ‘ G G

G ail an H p1 p2
G a1 ax T 1-pp 1-po

> p(xt|x¢—1) is a finite state machine, a discrete Markov random
process.
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Three Problems

» The Bayesian network

H T T H

» P1: if we have the model, and given an observation sequence,
e.g., (HHTTHTTTH), determine the likelihood of this
sequence

» P2: given the observation sequence, estimate which coin was
selected at each time, i.e., infer the hidden states

» P3: given a number of observation sequences, estimate the
parameters of the biased coins, and the parameters of the
finite state machine
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Graphical model

v

A simple Dynamic Bayesian network

Z

0

Hidden process x;

Hidden states S = {S1,...,Sn}
Observation process z;

Observation symbols O = {0y, ...,On}
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Parameters A = (A, B, )

» The Markov process is specified by its transition probability
p(x¢|xe—1). It is a matrix A = {aj;}

aj = p(xe = Sj|xt-1=15;), 1<i,j<N

» The observation is specified by the conditional (or emitting)
prob p(z:|x;). It is a matrix B = {b;(k)}

bj(k):p(ZtZOk|Xt:Sj), 1§j§N, 1§k§/\/l

p(Zt|Xt) ‘ 51 ‘ 52 ‘ e ‘ SN
O | b(1) | k(1) | .- | bu(1)
0O, bi(2) | b2(2) | ... | bn(2)
On | ba(M) | ba(M) | ... | (M)

» The initial states (prior) @ = {m;}

TF,':p(X;[:S,'), 1§i§N



A Generative Model

» It fully models the generation of the observation sequence

» S1: choose initial hidden states, and set t =1

> S2: generate observation z; = Oy according to the state S;

based on b;(k)

» S3: transit to a new state x;11 = S; according to the
dynamics

» S4: t—t+1, gotoS2

» This process generates Z, = (z1,...,2t)
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Three Basic Problems

» P1: Likelihood: Given an observation sequence
Z; =(z,...,2z7) and the model A = (A, B, ), compute the
likelihood of this sequence p(Z|A)

» P2: Inference: Given an observation sequence
Z; =(z1,...,2z71) and the model A = (A, B, ), determine
the hidden states X+ = (x1,...,x7)

» P3: Learning: Estimate the model A = (A, B, ), given a set
of observation sequences as training data,

1 1 1 2 2 n n
Z() (zf),.. ()) Z() (f)”wzg_))’Z(T):(zf) (T))
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Inference and Learning in HMM
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Compute the Likelihood: the complexity

» The conditional likelihood

T

P(Z7|X7r,A) = HP(Zt|Xt7/\)
t=1

= by(21)bx(22) - - - by (27)

> We have p(X7|A) = Ty 3x,03x0x3 - - - 3xr_1x:

» We need to sum over all possible pathes

PZ7IN) = Y p(Z7IX7, Np(XT|A)
all X5

= Z T bxy (21) x50 bxa (22) - - - @xp_yxr bxr (27)

X1y, XT

» Complexity O(2TNT). This exhaustive method is not realistic
» How to make it more computationally efficient?
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ldea:

Recursion

p(zla-"aztaxt) — P(Z]_,...,th]_,zt,Xt) :p(Zt_luztaXt)
—_————

- / p(ze54lZs 150 1)P(Zy 1, %01)
Xt—1

= plzlx) / p(xelxt-1) P(Zy_1.Xe_1)
Xt—1 N e

or—1

p(zla--.,zt):/ p(217...,zt’Xt):/ Qi
Xt Xt
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Compute the Likelihood: Forward Algorithm

» Define a(i) = p(z1,. .., ze,xe = Si|N\) = p(Z,, xe = Si|N\)
S1: Init: a1(i) = mibi(z1),1 <i <N
S2: Induction:

Oét+1(J [Z Oét(k 3@] )j Zt+1)

S3: Termination:
P(Z+|\) = Zar

» Complexity O(N2T)

13/19



Another solution: Backward Algorithm

> Define Z; = (z¢41,...,27)

» Define (:(i) = p(z¢+1, Ze42 - - - 27 |xe = Siy N)
S1: Init: Br()=1,1<i<N
S2: Induction:

N
(i) = Y aikbr(ze+1)Bera(K)

k=1

(Z7[N) = Zﬁl
» Why does it work? Let's see the recursion
P(zt|Xt—1) = P(Zt>zt+1|xt—1)
= /p(zt,it“\xt,xt1)p(xt|xt1)

Xt

= /p(zt\xt)p(ztﬂ!Xt)P(Xt|Xt1)

S3: Termination
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To See it Clearly

> (i) and (¢(i) are closely related

O[t(l)ﬁt(/) = p(zla"'uztaxt = Si‘/\)p(zt+17"'7zT|Xt :Siv/\)
= p(ZT7Xt = SI|/\)

» This implies (data likelihood)

p(ZIN) = Z (1) Be (1)

» This also implies (inference)

p(xt|Z, N) oc ae(i)Be (i)
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Inferring the Hidden States: belief

v

Define (i) = p(xt = Si|Z+,\) to be the belief of x;
The MAP estimate

v

x; = argmax~¢(i) = argmax p(x¢ = Si|Z+,\)
1<i<N 1<i<N

It it clear that

v

’Yt(i) — p(Xt = Si?ZTV\) — ()/Bt()
p(Z7|N) Z =1 (1) B:(i)

v

This is the conditional posterior of x; (i.e., the belief of x;)

v

It does not tell p(x1,...,x7|Z7,N)
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Inferring the Hidden States: Viterbi Algorithm

» The MAP of the joint state is actually the optimal path
» Define by
0t(i) = max p(x1,...,xe =1,z1,...,2z|N)
XLy Xt—1

the best score of the single path up to time t

v

optimal sub-path condition is satisfied

t41()) = [m?X5t(i)aij] bj(zt+1)

v

Construct the trellis and do dynamic programming

v

The optimal path is obtained by backtracking
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Learning HMM: Sufficient Statistics

» Define
&(i,)) = p(xe = Si, xev1 = Sj|1Z+, N)
» This is the belief of a joint pair

» This can be easily computed

P(Xt = S/, Xt11 = Sj,ZTV\)
p(ZTvA)
at(i)aﬁbj(ZtJrl)BtJrl(j)

&e(in)) =

Z,Nzl ZJN:;l Oét(i)aij bj(zt—i-l)ﬂt—&—l(j)

> It is straightforward to see the relation to (/)

N
(i) = &)
j=1

18/19



Learning: Baum-Welch Algorithm

» We can have an EM procedure for estimating A
» The E-step is done based on the inference process
» Collect the those sufficient statistics

T
nyt(i) — expected # of transitions fromS;
t=1

zT:&(i,j) «— expected # of transitions from S; to S;
» So ttl:e:l M-step is simply the following
7ti = expected freq. in S; at t =1 = v1(i)
5 — E[# of trans. from S; to Sj] _ Zthl ()
Y E[# trans. from S| S (i)
E[# of times in S; obsrv. Ox]  >—i z—0, 1tU)

bj(k) = E[# of times in §j] B Zthl 7(/)
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