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1 Affine Structure From Motion Problem

1.1 Structure Representation

For a right 3D object, its 3D structure can be represented by a set of 3D points, i.e.,

S =
[

P1 P2 . . . PP

]

3×P

1.2 Assumptions

We assume (1) orthographic projection, and (2) affine motion.

1.3 The Problem

Given a video stream of F frames of such a structure, and we assume that we have successfully
track these points in images, i.e., we have obtained the trajectory of image coordinates, i.e.,
{(ufp, vfp), f = 1, . . . , F, p = 1, . . . , P}.

We want to solve the 3D structure from theses image observations.

2 A Factorization Approach

2.1 Introduction

Among many techniques of structure from motion proposed in the literature, factorization is
particularly interesting for three reasons: no knowledge of the number of objects is required;
no initial segmentation is necessary; and a measurement matrix is globally factorized into
two matrices (one for motion, and the other for structure), achieving higher robustness to
data noise. Factorization was originally developed by Tomasi and Kanade for structure from
motion of a single object under orthographic projection [10], and was later extended to para-
perspective or affine cameras in [8]. A sequential version was proposed in [7]. Attempts were
made to generalize the technique for full perspective [9], but due to the inherent nonlinearity
of camera projection, some preprocessing (especially depth estimation) is necessary, which
leads to a sub-optimal solution.

Costeira and Kanade proposed a first algorithm for multibody segmentation based on
factorization [2]. Similar approaches were later developed for linearly moving objects [4] and
for deformable objects [1]. In this paper, we only consider Costeira and Kanade’s original
problem: Given p feature points tracked over T frames with an affine camera, determine
the number of moving objects in the scene, their motions and their structures. This is a
formidable problem because of the inherent combinatorial property and data noise. Costeira
and Kanade [2] based their segmentation algorithm on a so-called shape interaction matrix
Q (see below). If two features belong to two different objects, their corresponding element in
Q should be zero; otherwise, the value should be non-zero. They then grouped features into
objects by thresholding and sorting Q. Gear [3] formulated the problem as graph matching
by placing appropriate weights on the graph edges, which are difficult to determine. Unfortu-
nately, the performance of both techniques degrades quickly when data points are corrupted
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with noise; the reason is that the relationship between data noise and the coefficients of Q
(or weights of the graph edges) is very complicated, making it hard to determine an appro-
priate threshold. Ichimura [5] proposed an improved algorithm by applying a discriminant
criterion for thresholding, but the discriminant analysis is still performed on the elements
of Q, resulting in a similar degradation with noise. To avoid this problem, Kanatani [6]
proposed to work in the original data space by incorporating such techniques as dimension
correction (fitting a subspace to a group of points and replacing them with their projections
onto the fitted subspace) and model selection (using a geometric information criterion to
determine whether two subspaces can be merged).

Wu et al. [11] proposed a new grouping technique based on orthogonal subspace de-
composition. After performing a singular value decomposition (SVD) of the measurement
matrix, they decomposed the object shape spaces into signal subspaces and noise subspaces.
They showed the signal subspaces of the object shape spaces are orthogonal to each other.
Instead of using the shape interaction matrix contaminated by noise, they introduced the
shape signal subspace distance matrix (or subspace distance matrix for short), D, for shape
space grouping, based on a distance measure defined over the subspaces. The values of
most entries of D are around 0 or 1, making the grouping procedure much easier. Outliers
are easily identifiable because their distances to all object subspaces are comparable. The
robustness of the proposed approach lies in the fact that the shape space decomposition
alleviates the influence of noise. This has been verified with extensive experiments.

2.2 Factorization

We compound these image coordinates. Let

U =











u11 . . . u1P

u21 . . . u2P
...

...
...

uF1 . . . uFP











F×P

V =











v11 . . . v1P

v21 . . . v2P
...

...
...

vF1 . . . vFP











F×P

and

W =





U
−−
V





2F×P

We can subtract the mean,

af =
1

P

P
∑

p=1

ufp bf =
1

P

P
∑

p=1

vfp

and

ufp = ufp − af U = [ufp]

vfp = vfp − bf V = [vfp]
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So,

W =





U
−−
V





2F×P

The origin of the world coordinate system is translated to the centroid of these 3D points.
In this new coordinate system, image frame is defined by {if , jf ,kf}, where kf = if × jf .

Under orthographic projection, we have,

ufp = iTf (Pp − tp)

vfp = jTf (Pp − tp)

Obviously, since we have chosen the centroid of these 3D points as the origin of the world
coordinate system, we have

1

P

P
∑

p=1

Pp = 0

So,

ufp = ufp − af = iTf (Pp − tp) −
1

P

P
∑

p=1

iTf (Pp − tp) = iTf Pp

Similarly
vfp = jTf Pp

Therefore,

W =





U
−−
V



 =



























iT
1

iT
2

...
iTF
jT
1

jT
2

...
jTF



























2F×3

[

S1 S2 . . . SP

]

3×P
= MS

where M2F×3 represents motion, and S3×P represents structure. It is easy to show that with
no noise,

rank(W ) ≤ 3

2.3 Singular Value Decomposition (SVD)

Assume P ≤ 2F , then
W = O1ΣO2

s.t., OT
1
O1 = OT

2
O = O2O

T
2

= IP×P ,Σ = diag(σ1, . . . , σP ), where O1 is 2F × P matrix, Σ
is P × P matrix, and O2 is P × P matrix.
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We only pay attention to the first three column of O1, first 3 × 3 of Σ, and first three
rows of O2.

O1 =
[

O′

1
| O′′

1

]

, Σ =

[

Σ′ 0
0 Σ′′

]

, O2 =





O′

2

−−
O′′

2





Then,
O1ΣO2 = O′

1
Σ′O′

2
+ O′′

1
Σ′′O′′

2

and
Ŵ = O′

1
Σ′O′

2
= M̂Ŝ

where
M̂ = O′

1
[Σ′]1/2, Ŝ = [Σ′]1/2O′

2

[Question]: Is such a decomposition unique?
[Answer]: (M̂Q)(Q−1Ŝ) = Ŵ

2.4 From Affine to Euclidean

Till now, M̂ is a linear transformation of M, and Ŝ is a linear transformation of S, i.e.,

M = M̂Q, S = Q−1Ŝ

where M̂ and Ŝ are obtained by the SVD of W. The problem here is that how to get Q,
thus to determine M and S. N

Notice that


















iT
1

...
iTF
jT
1

...
jTF



















=





















îT
1

...

îTF
ĵT
1

...

ĵTF





















Q

Since iTf if = 1 and iTf jf = 0, then











îTf QQT îf = 1

ĵTf QQT ĵf = 1

îTf QQT ĵf = 0

Here Q is a 3× 3 matrix which has 9 unknowns, but we have 3× F constraints. We can
solve Q through these nonlinear constraints.
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Factorization approach to affine structure from motion:

• W → W;

• W = O1ΣO2;

• O1 → O′

1
, O2 → O′

2
, Σ → Σ′;

• M̂ = O′

1
(Σ′)1/2, Ŝ = (Σ′)1/2O′

2
;

• compute Q;

• M = M̂Q, S = Q−1Ŝ.

Figure 1: Factorization Approach to Affine SfM (Tomasi&Kanade’92)

3 Factorization to Nonrigid Object

3.1 Structure Representation for a Nonrigid Object

The structure of a 3D nonrigid object can be represented by a combination of a set of key
frame basis {S1, . . . ,SK}, each key frame Sk is a 3 × P matrix of P points, i.e.,

S =
K
∑

i=1

liSi

where S,Si ∈ R3×P , and li ∈ R. We also assume orthographic projection, we write:

[

uf1 uf2 . . . ufP

vf1 vf2 . . . vfP

]

= Rf

(

K
∑

i=1

lfiSi + tf

)

where

Rf =

[

iTf
jTf

]

=

[

rf1 rf2 rf3

rf4 rf5 rf6

]

Here, the mean is also subtracted, i.e.,

ūfi = ufi − af , af =
1

P

P
∑

i=1

ufi = [rf1, rf2, rf3](
K
∑

i=1

lfiSi)

So,
[

ūf1 . . . ūfP

v̄f1 . . . v̄fP

]

= Rf (
K
∑

i=1

lfiSi) = [lf1Rf , . . . , lfKRf ]







S1

...
SK
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3.2 Factorization

So, considering all data, we have

W =



















ū11 . . . ū1P
...

...
...

ūF1 . . . ūFP

v̄11 . . . v̄1P
...

...
...

v̄F1 . . . v̄FP



















2F×P

=



















l11i
T
1

. . . l1KiT
1

...
...

...
lF1i

T
F . . . lFKiTF

l11j
T
1

. . . l1KjT
1

...
...

...
lF1j

T
F . . . lFKjTF



















2F×3K







S1

...
SK







3K×P

= MS

So,
W = Ô1Σ̂Ô2 = Ô1(Σ̂)1/2(Σ̂)1/2Ô2 = M̂Ŝ

The trick here is to reorganize M, i.e.,

B =







lf1i
T
f lf1j

T
f

...
...

lfKiTf lfKjTf






=







lf1

...
lfK







[

iTf jTf
]

Question 1: rank(B) =?.
Question 2: What’s the advantage of playing such a trick?

4 Factorization to Multibody

4.1 Structure Representation for Multibody

Suppose N1 feature points belong to object one, and N2 features points belong to object
two.

W∗ =
[

W1 | W2

]

where

W1 = U1Σ1V
T
1

= M1S1 = (M̂1A1)(A
−1

1
Ŝ1)

W2 = U2Σ2V
T
2

= M2S2 = (M̂2A2)(A
−1

1
Ŝ2)

So,

W∗ =
[

M1 | M2

]

[

S1 0
0 S2

]

=
[

U1 | U2

]

[

Σ
1/2

1
0

0 Σ
1/2

2

]

[

A1 0
0 A2

] [

A−1

1
0

0 A−1

2

]

[

Σ
1/2

1
0

0 Σ
1/2

2

]

[

VT
1

0
0 VT

2

]
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where

W∗ =
[

M1 | M2

]

, S∗ =

[

S1 0
0 S2

]

A∗ =

[

A1 0
0 A2

]

, U∗ =
[

U1 | U2

]

Σ∗ =

[

Σ
1/2

1
0

0 Σ
1/2

2

]

, V∗T =

[

VT
1

0
0 VT

2

]

So,

W∗ = M∗S∗

S∗ = A∗−1(Σ∗1/2)V∗T

M∗ = U∗(Σ∗1/2)A

Here, what we have is just W = UΣVT , since the grouping is not available.

4.2 Shape Interactive Matrix

Let Q = VVT , then what is Q∗.

Q∗ = V∗V∗T = S∗TA∗T Σ∗A∗S∗ = S∗T
(

A∗−1Σ∗−1S∗−T
)

−1

S∗

= S∗T
[(

A∗−1Σ∗−1/2V∗T
) (

V∗Σ−1/2A∗−T
)]−1

S∗ = S∗T
(

S∗S∗T
)

−1

S∗

=

[

ST
1

0
0 ST

2

] [

Λ−1

1
0

0 Λ−1

2

] [

S1 0
0 S2

]

=

[

ST
1
Λ−1

1
S1 0

0 ST
2
Λ−1

2
S2

]

4.3 Affine Motion Segmentation

For multibody structure from motion problem, the identities of the set of feature points
are unavailable, except the correspondences are given. Therefore, V would not be a block
diagonal matrix, instead, structure vectors of different objects would be mixed up. In order
to solve the structure and motion, we have to reveal the identities of each feature points,
i.e., solve the multibody grouping problem.

Fortunately, it is easy to show that the shape interaction matrix Q∗ is also block diagonal,
and

Q∗

ij =







ST
1iΛ

−1

1
S1j i, j belong to 1st object

ST
2iΛ

−1

2
S2j i, j belong to 2nd object

0 i, j belong to different objects

Such a property provides a clue for the segmentation of multiple objects, i.e., if V T
i Vj 6= 0,

the i-th and j-th feature points should be grouped together; otherwise, they may belong to
different objects. Therefore, the segmentation could be achieved by permuting V to make
Q block diagonal. This was the basic idea in [2] for multibody structure from motion. It
could be illustrated in Figure 2, where (a) displays the original Q, while (b) displays the Q
after permutation.
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Figure 2: The shape interaction matrix Q before and after permutation, w/o noise

It is noticed that the nice property of the shape interaction matrix Q is valid only for the
ideal case where there are no noise and outliers. Unfortunately, in practice, the extraction
and tracking of feature points would incur some inaccuracy, thus the measurement noise is
unavoidable. Thus, even if two feature points belong to different objects, Qij may not be
equal to zero. This will be illustrated in Figure 3.
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Figure 3: The shape interaction matrix Q before and after permutation, w/ noise

References

[1] C. Bregler, A. Hertzmann, and H. Biermann. Recovering non-rigid 3D shape from
image streams. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
pages 690–696, Hilton Head Island, SC, June 2000.

[2] J. Costeira and T. Kanade. A multibody factorization method for independently moving
objects. Int’l Journal of Computer Vision, 29:159–179, 1998.

9



[3] C. Gear. Multibody grouping from motion images. Int’l Journal of Computer Vision,
29:133–150, 1998.

[4] M. Han and T. Kanade. Reconstruction of a scene with multiple linearly moving objects.
In IEEE Conf. on Computer Vision and Pattern Recognition, volume II, pages 542–549,
Hilton Head Island, SC, June 2000.

[5] N. Ichimura. Motion segmentation based on factorization method and discriminant
criterion. In Proc. IEEE Int’l Conf. on Computer Vision, pages 600–605, Greece, Sept.
1999.

[6] K. Kanatani. Motion segmentation by subspace separation and model selection. In
Proc. IEEE Int’l Conf. on Computer Vision, Vancouver, Canada, July 2001.

[7] T. Morita and T. Kanade. A sequential factorization method for recovering shape and
motion from image streams. IEEE Trans. on Pattern Analysis and Machine Intelligence,
19:858–867, 1997.

[8] C. Poelman and T. Kanade. A paraperspective factorization method for shape and
motion recovery. IEEE Trans. on Pattern Analysis and Machine Intelligence, 19:206–
218, 1997.

[9] P. Sturm and B. Triggs. A factorization based algorithm for multi-image projective
structure and motion. In Proc. European Conf. on Computer Vision, volume II, pages
709–720, Cambridge, UK, 1996.

[10] C. Tomasi and T. Kanade. Shape and motion from image streams under orthography
– a factorized method. Int’l Journal of Computer Vision, 9:137–154, 1992.

[11] Ying Wu, Zhengyou Zhang, Thomas S. Huang, and John Lin. Multibody grouping
via orthogonal subspace decomposition. In Proc. IEEE Conf. on Computer Vision and

Pattern Recognition, volume II, pages 252–257, Hawaii, Dec. 2001.

10


