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1 Radiometry

1.1 Solid Angle

Solid angle is a very important concept. Solid angle is defined by the projected area of a
surface patch onto a unit sphere of a point, meaning that a solid angle is subtended by
a point and a surface patch, which is shown in Figure 1. n is the normal of the surface
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Figure 1: Solid angle subtended by S0 and surface patch dA

patch dA, and S0 is the point centered at a unit sphere. The distance between S0 and dA is
r, and the angle between surface normal n and the point direction is θ. dA0 is the projection
of the surface patch on the unit sphere. So,

dω = dA0 =
dAcosθ

r2
(1)

Where dAcosθ is the foreshortened area of dA on the direction of dA-S0. The unit of solid
angle is steradians, or sr for short.

Question: what is the solid angle of the whole sphere? (Answer: 4π. Why?)

1.2 Radiance and Irradiance

Both Radiance and Irradiance are measures for lighting intensities. Frequently, we use
radiance to measure the lighting sources, but use irradiance to measure the lighting intensity
received by a patch. By definition, the radiance of an area lighting source is:

Radiance =
power

solid angle source× foreshortened area of source

i.e.,

Lr(x, θr, ψr) =
dφ

dωrcosθrdAr

(2)

2



where dAr is the lighting source surface, x is the location of the source, and θr, ψr is used
to represent the lighting direction. Denote illuminated surface by dAi and its foreshortening
angle by θi, then the solid angle

dωr =
dAicosθi

r2
. (3)

Then

Lr(x, θr, ψr) =
r2dφ

cosθicosθrdAidAr

. (4)

Note the foreshortened area is for the area lighting source, and the solid angle is that one
subtended by the source and another illuminated surface dAi. So, radiance basically means
that how much lighting emitted from the source per area of the source patch per solid angle
of the illuminated patch.

Obviously, the power emitted from the source to the illuminated patch is:

dφ = Lr(x, θr, ψr)(cosθrdAr)dωr (5)

If the source is a point source, by definition, we use radiance intensity:

Radiance Intensity =
power

solid angle source

i.e.,

I =
dφ

dωr

=
r2dφ

cosθidAi

(6)

Let’s have an example: an area source dA1 illuminating a surface patch dA2 as shown in
Figure 2 Obviously, the foreshortened area for source dA1 is dA1cosθ1, and the solid angle
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Figure 2: An example of calculating radiance

subtended by A1 and patch dA2 is dω1(2) = cosθ2dA2/r
2. So, the power emitted from the

source patch dA1 is:

dφ1→2 = L(x1, x1 → x2)(cosθ1dA1)dω1(2) = L(x1, x1 → x2)
cosθ1cosθ2dA1dA2

r2
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On the other hand, we can also calculate the power received by the illuminated surface patch
dA2, noticing that the foreshortened area for the surface patch is dA2cosθ2, and the solid
angle subtended by A2 and dA1 is dω2(1) = cosθ1dA1/r

2:

dφ2←1 = L(x2, x2 ← x1)(cosθ2dA2)dω2(1) = L(x2, x2 ← x1)
cosθ1cosθ2dA1dA2

r2

Obviously, since dφ1→2 = dφ2←1, so L(x1, x1 → x2) = L(x2, x2 ← x1).
On the other hand, we use irradiance to represent the lighting received by a surface patch.

By definition,

Irradiance =
power

not forshortened area of patch

i.e.,

Li =
dφ

dAi

(7)

So, for point sources,

Li =
Icosθi

r2
, (8)

while for area sources,

Li =
Lr(x, θr, ψr)dArcosθrdωr

dAi

=
Lr(x, θr, ψr)dArcosθrcosθi

r2
= Lr(x, θr, ψr)cosθidωi. (9)

Again, let’s examine an example: calculating the irradiance of a surface patch dA0 illumi-
nated by a plate source O′, where the surface patch is parallel to the plate, as shown in
Figure 3. Apparently, the foreshortened area of a small patch on the plate is dAcosθ =
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Figure 3: An example of calculating irradiance

rcosθdrdϕ, and the solid angle subtended by A0 and such a small lighting patch is dω =
dA0cosθ/PO

2 = dA0cosθ/(h
2 + r2). Noticing that cosθ = h/

√
h2 + r2, we have the power

emitted from such a small lighting patch dA to the surface patch dA0 is:

dφ = LrdAcosθdω = Lr

h2dA0

(h2 + r2)2
rdrdϕ
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So, the total power emitted from the plate to the surface patch dA0 is an integral of all such
a small lighting patches, i.e.,

φe =

∫ R

0

∫ 2π

0

dφ = Lr

πR2

h2 +R2
dA0

In result, the irradiance of the surface patch is:

Li =
φe

dA0

= Lr

πR2

h2 +R2

2 The Relationship between Image Intensity and Ob-

ject Illuminance

We can see objects because they reflect lights. Intuitively, if the camera receive more lights
reflected from the object, the image should look brighter. So, what is the exact relationship
between the image intensity and the object illuminance? First, we can examine the power
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Figure 4: The relationship between image intensity and object illuminance

emitted received by the lenses (with diameter d). We assume the power received by the
image patch is the same as that received by the lenses with no loss. Here, the power emitted
to lenses is:

dφ = LrdA0cosαdω0

where dω0 is the solid angle subtended by the source A and the lenses:

dω0 =
πd2

4r2
cosθ
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where r = |OA|. Since the solid angle subtended by optic center O and surface patch dA0 is
the same as the one subtended by O and image patch dAp, we have:

dA0cosα

r2
=
dApcosθ

OA′2

where OA′ = f/cosθ. So,

dφ = Lrr
2dω0

dApcosθ

OA′2
=
π

4
Lr

(

d

f

)2

cos4θdAp

It follows that the irradiance of the image patch is:

Li =
dφ

dAp

=
π

4
Lr

(

d

f

)2

cos4θ

Since generally the field of view of camera is quite narrow, i.e., θ is small, we can let cosθ = 1.
Approximately, we have:

Li =
π

4
Lr

(

d

f

)2

(10)

This equation means that the irradiance, thus image intensity, is proportional to the radiance
of the object, which follows exactly our intuition.

3 Surfaces and BRDF

3.1 BRDF

Different surface patches have different properties of reflecting lights. We define a bidiretional

reflectance distribution function to representing the relationship in terms of energy between
incident light and reflected light. BRDF is defined by the ratio of outgoing radiance and
incident irradiance, i.e.,

ρbd(θr, ϕr, θi, ϕi) =
Lr(x, θr, ϕr)

Li(x, θi, ϕi)
=

Lr(x, θr, ϕr)

Ls(x, θs, ϕs)cosθidωi

(11)

The unit of BRDF is sr−1.

3.2 Lambertian Surface, Diffusion and Albedo

A Lambertian surface has a constant BRDF, which means that a Lambertian surface will
look equally bright from any view direction, since its BRDF is independent of outgoing
directions. Lambertian surface is also called ideal diffusion surface.

We define diffuse reflectance or Albedo by:

ρd =

∫

Ω

ρbd(θr, ϕr, θi, ϕi)cosθrdωr =

∫

Ω

ρcosθrdωr = πρ
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In other words, for a Lambertion surface, the diffused radiance Ld is proportional to the
incident radiance, i.e., Ld = rdLi, where rd is a constant. Since for a point source, the
irradiance of the surface is Li = Icosθi/r

2, so the diffusion radiance is Ld = rdIcosθi/r
2. As

a result, image intensity will be

Id = Ird

π

4

(

d

f

)2
1

r2
cosθi = kdcosθi,

where θi is the illumination direction (or the incident light direction, i.e., the angle between
lighting source and the surface), and kd is the diffusion coefficient for a particular surface.
Such an equation means that:

• a Lambertian surface is equally bright from any view direction with fixed source;

• the image intensities of the surface only changes with the illumination directions.

3.3 Specular Surface

Specular surfaces are such that behaves like mirrors. For an incident light, specular surfaces
only reflect light along specific directions. If the view directions are not the same as the
specular reflection direction, the camera will not see the specular reflected lights. The image
intensity can be written by:

Is = ksδ(θc − θi)δ(ϕc − ϕi)

4 Shading Model of Point Source

In this section, we only consider point light sources. Suppose n is the normal of a surface
patch, and s is the lighting direction. So, the radiosity of such a patch s

B(x) =

∫

Ω

L(x, θ, ϕ)cosθdω = ρd(x)
n · s
r(x)2

where r(x) is the distance between the light source and the point, which is a function of the
point x. Also, ρd,n and s all are function of the point position x.

If the point light source is located at infinity, we have

B(x) = ρd(x)(n · s)

since we can treat n and s constants for all points on the patch. Obviously, the albedos of
each point are different. Furthermore, if we have multiple point sources, we have:

B(x) =
∑

k∈visible sources

ρd(x)(n(x) · sk)
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5 Photometric Stereo

5.1 The Problem

The problem of photometric stereo is quite interesting: if we are given a set of images of the
same scene taken under different given lighting sources (the camera and the scene are kept
intact), can we recover the 3D (shape) of the scene?
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Figure 5: The setting of photometric stereo

For simplicity, we assume Lambertian for all surfaces, and the light sources are point
light sources at infinity.

5.2 Recover Surface Normals

From previous sections, we have known that the image intensity can be written as:

I = kdcosθ = kds
Tn

Suppose we are given three point light sources, i.e., s1, s2, s3. We have taken three image
under such three lighting condition, respectively:

Ii = kds
T
i n, i = 1, 2, 3

Since we keep the camera and the scene intact, each image pixel of the three images corre-
spond to the same 3D point, meaning that for any particular image pixel, Ii is only a function
of lighting direction si because kd and n are unchanged. Also we assume the intensities for
different sources are the same, and the distances from different lighting sources are the same
also. So, we stack Ii up to get a vector for each pixel:

I =





I1
I2
I3



 = kd





sT
1

sT
2

sT
3



n = kdSn
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where S is a 3 × 3 matrix. Since the directions for each lighting source are given, i.e., S is
given, we have:

kdn = S−1I

Since n is normalized unit vector, we have:

n =
S−1I

||S−1I||

Apparently, if we have more than three sources, we can use least square fitting to get the
solution, i.e.,

n =
S†I

||S†I||
Question: what if we do not know the lighting directions? (Possible answer: we can calibrate
or estimate lighting directions by giving the normals of least three 3D points. The procedure
follows the same as above.)

5.3 From Normals to Shape

Till now, we have solved the normals of the points on the surface, but we have not figured
out its 3D shape represented by the 3D coordinates of these 3D points. So, let’s see how to
solve shape from normals.

A 3D surface is represented as Z = f(X,Y ). In the camera coordinate system, image
coordinates can be written as

u =
fX

Z
, v =

fY

Z
, f is focal length

When we use weak perspective (or scaled orthographic) camera model, we have

u = kX, v = kY, k =
f

Z0

So, Z = f(kX, kY ), and

n =
1

√

1 +
(

∂Z
∂X

)2
+

(

∂Z
∂Y

)2

[

− ∂Z
∂X

,−∂Z
∂Y

, 1

]T

=
1

√

k2 +
(

∂Z
∂u

)2
+

(

∂Z
∂v

)2

[

−∂Z
∂u

,−∂Z
∂v

, k

]T

Since n = [nx, ny, nz]
T and we have figured it out before, we can write,

∂Z

∂u
= −knx

nz

∂Z

∂v
= −kny

nz
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Since we do not know Z0, we can assume Z̄ = Z/k, and we have

∂Z̄

∂u
= −nx

nz

= n2(u, v) (12)

∂Z̄

∂v
= −ny

nz

= n1(u, v) (13)

And Z can be solved from such a set of partial differential equations. However, since images
are just discrete points, we can avoid solving differential equations by looking at all the
image pixels:

Z̄(u+ 1, v) − Z̄(u, v) = n1(u, v)

Z̄(u, v + 1) − Z̄(u, v) = n2(u, v)

If we have M pixels, we will have 2M equations to solve M unknowns. We can again use
least square fitting to figure them out. Please notice, our solution is up to a scale factor,
since what we solve is not true Z, but Z̄, which is a scaled version of Z.

6 Illumination Cone (optional)

If an image consists of N pixels, we can treat this image as a point in space RN . If we fix
the camera and the object, but change the lighting conditions arbitrarily, for example, we
can move the light sources, change the lighting intensities, and even add or remove lighting
sources, the question we ask is: what is the set of images of an object under ALL lighting

conditions?. In other words, what should be the distribution of all the images in RN?
Do those images sweep whole RN? Let’s guess . . ..
What is the dimensionality of such a set of images? You can have guess again . . ..
If we are give several images of the same object taken under different lighting conditions,

can we synthesis some other images of this object under other lighting conditions? You
surely answer yes, but how?

To get the answers, let’s read Peter Belhumeur and David Kriegman “What is the Set

of Images of an Object Under All Possible Lighting Conditions”, which is the best paper of
CVPR’96. If interested, please read another paper by A. Georghiades, D. Kriegman and
P. Belhumeur, “Illumination Cones for Recognition Under Variable Lighting: Faces”, in
CVPR’98.
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