
Hidden Markov Model

Ying Wu

Electrical Engineering and Computer Science
Northwestern University

Evanston, IL 60208

http://www.eecs.northwestern.edu/~yingwu

1 / 19

Outline

Example: Hidden Coin Tossing

Hidden Markov Model

Inference and Learning in HMM

2 / 19

Tossing Two Biased Coins

◮ Two biased coins (C1 and C2)

◮ Person A is selecting the coin and tossing it

◮ Person B is the observer, and is recording the sequence of H/T

◮ The selection of the coin is a secrete to B (hidden)

◮ At a certain time instance t, we have two random variables:
◮ xt indicates which coin that is chosen (C1 or C2)
◮ zt indicates the toss (H or T)

◮ The probabilities are

p(xt |xt−1) C1 C2

C1 a11 a12

C2 a21 a22

p(zt |xt) C1 C2

H p1 p2

T 1− p1 1− p2

◮ p(xt |xt−1) is a finite state machine, a discrete Markov random
process.

3 / 19

Three Problems

◮ The Bayesian network

? ? ? ?

H T T H

...

◮ P1: if we have the model, and given an observation sequence,
e.g., (HHTTHTTTH), determine the likelihood of this
sequence

◮ P2: given the observation sequence, estimate which coin was
selected at each time, i.e., infer the hidden states

◮ P3: given a number of observation sequences, estimate the
parameters of the biased coins, and the parameters of the
finite state machine

4 / 19

Outline

Example: Hidden Coin Tossing

Hidden Markov Model

Inference and Learning in HMM

5 / 19

Graphical model

◮ A simple Dynamic Bayesian network

x0 x1 xt-1 xt

Z0 Z1 Zt-1 Zt

...

◮ Hidden process xt

◮ Hidden states S = {S1, . . . ,SN}

◮ Observation process zt

◮ Observation symbols O = {O1, . . . ,OM}

6 / 19

Parameters Λ = (A,B, π)
◮ The Markov process is specified by its transition probability

p(xt |xt−1). It is a matrix A = {aij}

aij = p(xt = Sj |xt−1 = Si), 1 ≤ i , j ≤ N

◮ The observation is specified by the conditional (or emitting)
prob p(zt |xt). It is a matrix B = {bj(k)}

bj(k) = p(zt = Ok |xt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤ M

p(zt |xt) S1 S2 . . . SN

O1 b1(1) b2(1) . . . bN(1)
O2 b1(2) b2(2) . . . bN(2)
.

OM b1(M) b2(M) . . . bN(M)
◮ The initial states (prior) π = {πi}

πi = p(x1 = Si), 1 ≤ i ≤ N

7 / 19

A Generative Model

◮ It fully models the generation of the observation sequence

◮ S1: choose initial hidden states, and set t = 1

◮ S2: generate observation zt = Ok according to the state Si

based on bi (k)

◮ S3: transit to a new state xt+1 = Sj according to the
dynamics

◮ S4: t ← t + 1, go to S2

◮ This process generates Zt = (z1, . . . , zt)

8 / 19

Three Basic Problems

◮ P1: Likelihood: Given an observation sequence
ZT = (z1, . . . , zT) and the model Λ = (A,B, π), compute the
likelihood of this sequence p(Z|Λ)

◮ P2: Inference: Given an observation sequence
ZT = (z1, . . . , zT) and the model Λ = (A,B, π), determine
the hidden states XT = (x1, . . . , xT)

◮ P3: Learning: Estimate the model Λ = (A,B, π), given a set
of observation sequences as training data,

Z
(1)
T = (z

(1)
1 , . . . , z

(1)
T), Z

(2)
T = (z

(2)
1 , . . . , z

(2)
T), Z

(n)
T = (z

(n)
1 , . . . , z

(n)
T)

9 / 19

Outline

Example: Hidden Coin Tossing

Hidden Markov Model

Inference and Learning in HMM

10 / 19

Compute the Likelihood: the complexity

◮ The conditional likelihood

p(ZT |XT , Λ) =
T∏

t=1

p(zt |xt , Λ)

= bx1(z1)bx2(z2) . . . bxT
(zT)

◮ We have p(XT |Λ) = πx1ax1x2ax2x3 . . . axT−1xt

◮ We need to sum over all possible pathes

p(ZT |Λ) =
∑

all XT

p(ZT |XT , Λ)p(XT |Λ)

=
∑

x1,...,xT

πx1bx1(z1)ax1x2bx2(z2) . . . axT−1xT
bxT

(zT)

◮ Complexity O(2TNT). This exhaustive method is not realistic

◮ How to make it more computationally efficient?

11 / 19

Idea: Recursion

p(z1, . . . , zt , xt)
︸ ︷︷ ︸

αt

= P(z1, . . . , zt−1, zt , xt) = p(Zt−1, zt , xt)

=

∫

xt−1

p(zt , xt |Zt−1, xt−1)p(Zt−1, xt−1)

= p(zt |xt)

∫

xt−1

p(xt |xt−1) p(Zt−1, xt−1)
︸ ︷︷ ︸

αt−1

p(z1, . . . , zt) =

∫

xt

p(z1, . . . , zt , xt) =

∫

xt

αt

12 / 19

Compute the Likelihood: Forward Algorithm

◮ Define αt(i) = p(z1, . . . , zt , xt = Si |Λ) = p(Zt , xt = Si |Λ)

S1: Init: α1(i) = πibi (z1), 1 ≤ i ≤ N

S2: Induction:

αt+1(j) =

[
N∑

k=1

αt(k)akj

]

bj(zt+1)

S3: Termination:

P(ZT |Λ) =
N∑

i=1

αT (i)

◮ Complexity O(N2T)

13 / 19

Another solution: Backward Algorithm
◮ Define Z̄t = (zt+1, . . . , zT)
◮ Define βt(i) = p(zt+1, zt+2, . . . , zT |xt = Si , Λ)

S1: Init: βT (i) = 1, 1 ≤ i ≤ N

S2: Induction:

βt(i) =

N∑

k=1

aikbk(zt+1)βt+1(k)

S3: Termination

P(ZT |Λ) =
N∑

i=1

β1(i)πi

◮ Why does it work? Let’s see the recursion

p(Z̄t |xt−1) = p(zt , Z̄t+1|xt−1)

=

∫

xt

p(zt , Z̄t+1|xt , xt−1)p(xt |xt−1)

=

∫

xt

p(zt |xt)p(Z̄t+1|xt)p(xt |xt−1)

14 / 19

To See it Clearly

◮ αt(i) and βt(i) are closely related

αt(i)βt(i) = p(z1, . . . , zt , xt = Si |Λ)p(zt+1, . . . , zT |xt = Si , Λ)

= p(ZT , xt = Si |Λ)

◮ This implies (data likelihood)

p(Z|Λ) =
∑

i

αt(i)βt(i)

◮ This also implies (inference)

p(xt |Z, Λ) ∝ αt(i)βt(i)

15 / 19

Inferring the Hidden States: belief

◮ Define γt(i) = p(xt = Si |ZT , Λ) to be the belief of xt

◮ The MAP estimate

x∗
t = arg max

1≤i≤N

γt(i) = arg max
1≤i≤N

p(xt = Si |ZT , Λ)

◮ It it clear that

γt(i) =
p(xt = Si ,ZT |Λ)

p(ZT |Λ)
=

αt(i)βt(i)
∑N

i=1 αt(i)βt(i)

◮ This is the conditional posterior of xt (i.e., the belief of xt)

◮ It does not tell p(x1, . . . , xT |ZT , Λ)

16 / 19

Inferring the Hidden States: Viterbi Algorithm

◮ The MAP of the joint state is actually the optimal path

◮ Define by

δt(i) = max
x1,...,xt−1

p(x1, . . . , xt = i , z1, . . . , zt |Λ)

the best score of the single path up to time t

◮ optimal sub-path condition is satisfied

δt+1(j) =

[

max
i

δt(i)aij

]

bj(zt+1)

◮ Construct the trellis and do dynamic programming

◮ The optimal path is obtained by backtracking

17 / 19

Learning HMM: Sufficient Statistics

◮ Define
ξt(i , j) = p(xt = Si , xt+1 = Sj |ZT , Λ)

◮ This is the belief of a joint pair

◮ This can be easily computed

ξt(i , j) =
p(xt = Si , xt+1 = Sj ,ZT |Λ)

p(ZT , Λ)

=
αt(i)aijbj(zt+1)βt+1(j)

∑N
i=1

∑N
j=1 αt(i)aijbj(zt+1)βt+1(j)

◮ It is straightforward to see the relation to γt(i)

γt(i) =
N∑

j=1

ξt(i , j)

18 / 19

Learning: Baum-Welch Algorithm
◮ We can have an EM procedure for estimating Λ
◮ The E-step is done based on the inference process
◮ Collect the those sufficient statistics

T∑

t=1

γt(i)← expected # of transitions fromSi

T∑

t=1

ξt(i , j)← expected # of transitions from Si to Sj

◮ So the M-step is simply the following

π̂i = expected freq. in Si at t = 1 = γ1(i)

âij =
E [# of trans. from Si to Sj]

E [# trans. from Si]
=

∑T
t=1 ξt(i , j)

∑T
t=1 γt(i)

b̂j(k) =
E [# of times in Sj obsrv . Ok]

E [# of times in Sj]
=

∑

t=i ,Zt=Ok
γt(j)

∑T
t=1 γt(j)

19 / 19

	Example: Hidden Coin Tossing
	Hidden Markov Model
	Inference and Learning in HMM

