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1 A Refreshment of Image Formation

For convenience, we introduce a normalized image plane located at the focal length f = 1.
In such a normalized image plane, the pinhole (c) is mapped to the origin of the image plane
(ĉ), and p is mapped to p̂ = [û, v̂]T .
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Let α = kf and β = lf . We call these parameters α,β,u0 and v0 intrinsic parameters, which
present the inner camera imaging parameters. We can write
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We call R and t extrinsic parameters, which represent the coordinate transformation between
the camera coordinate system and the world coordinate system. So, we can write,
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We call M the projection matrix.

2 Epipolar Geometry

The geometry of two camera is illustrated in Figure 1. Here O1 and O2 are the optical
centers of two cameras. Π1 and Π2 are the two normalized image plane. P is a 3D point,
and P1 and P2 are the image point of P on the two image plane respectively. We call O1O2

baseline, the plane O1O2P epipolar plane. The intersections of the epipolar plane with the
two image planes are two lines, i.e., l1 and l2, which are call epipolar lines. Obviously, l1 is
uniquely determined by the the baseline and P2. We call l1 the epipolar line associated with
P2, and vice versa. An interesting thing is that the epipolar line l2 is the projection of line
O1P and l1 is the projection of O2P , as shown in Figure 2 . For any given image point P1 in
the left image, the ray O1P1 is fixed, since every point on the line O1P1 will have the same
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Figure 1: Epipolar Geometry

image projection. As a result, the epipolar line l2 is fixed. The intersection of the baseline
O1O2 with the epipolar lines, i.e., e1 and e2, are epipoles.

The question is how to determine the epipolar lines, or what is an algebraic representation
of the epipolar lines. We shall make it clear in later sections. Let’s look at a simple case
of stereo to recover the 3D position of a 3D point, as shown in Figure 3. In this case, we
assume we have two exact the same cameras, and put them by just a simple translation. We
also assume we can find two image points P1 = [u1, v1]

T and P2 = [u2, v2]
T in two images,

and assume the two cameras are calibrated. Let O1O2 = b. Since the we use normalized
image plane, i.e., the normalized image plane is located at z = f = 1, we have:

u1 − u0 = α
X1

Z1

, v1 − v0 = β
Y1

Z1

u2 − u0 = α
X1 − b

Z1

, v2 − v0 = β
Y1

Z1

Then, we have

X1 =
b(u1 − u0)

u1 − u2

Y1 =
bα(v1 − v0)

β(u1 − u2)

Z1 =
bα

u1 − u2

When we have large baselines, i.e., b is large, the recovery of 3D point is accurate, but the
problem induced by large baseline is that we may not have the image point correspondences
due to occlusion. From above, to recover a 3D point, we should know P1 and P2, which will
be given by stereo matching, and {α, β, b}, which are set when cameras are calibrated. In
other words, there are two main issues here: (1) how to construct correspondences, and (2)
how to calibrate cameras.

3



p2

P3

P2

P1

P4

e e

O O

p

Π

Π

1

1

1

1

2

2

2

l l
1 2

Figure 2: Epipolar Line: every point on O1P will project to the epipolar line l2.

We have been quite clear at this point that for any given image point at one image, its
correspondence on the other image must lie on the epipolar line associated with this image
point. This fact suggests that we do not need to search the whole 2D image for matching,
but just search the 1D epipolar line, which will greatly reduce the computation. But the
question is that how we know the algebraic forms for the epipolar constraints.

3 Essential Matrix

We assume here the two cameras are well calibrated, i.e., we know the intrinsic parameters
and extrinsic parameters for both cameras. We use the camera coordinate system of one
cameras (e.g. the left one) as the world coordinate system. So, we know 1

2R and 1
2t, which

describe the relative position of the two cameras. Let
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 , 2P̂2 =
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the two image points in their own coordinate systems. Obviously, we have

(1P̂2) = (1
2R)(2P̂2) + (1

2t)

which shows the coordinate system transformation.
Apparently, O1P1, O1O2 and O2P2 are coplanar, so we have:

O1P1 · [O1O2 × O2P2] = 0

Since

O1P1 = 1P̂1

O1O2 = 1O2 −
1 O1 =1 O1 +1

2 t −1 O1 = t

O2P2 = 1P2 −
1 O2 =1

2 R(2P̂2) +1
2 t −1

2 t =1
2 R(2P̂2)
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Figure 3: A simple case: two identical camera located on x-axis.

So, we have
(1P̂1) · [t × (1

2R)(2P̂2)] = 0

i.e,
(1P̂1) · [t × R(2P̂2)] = 0 (2)

We denote

[t]× =





0 −tz ty
tz 0 −tx
−ty tx 0





As a property of [t]×, it is easy to show that [t]×r = t × r, and [t]× = −[t]T
×
. We can write

Equation 2 as
(1P̂1)

TE(2P̂2) = 0 (3)

where E = [t]×R, and we call is the Essential Matrix.
Equation 3 is the representation of epipolar constraints. Obviously, the epipolar line

associated with 2P2 is E(2P̂2) in I1, and the epipolar line associated with 1P1 is ET (1P̂1) in
I2.

[Question:] Is E singular?
[Answer:] Yes.
[Why:] Since t//e, and ET e = [[t]×R]T e = −RT [t]×e = 0 (due to [t]×e = 0). So, the

epipole e2 is the zero eigenvector of E and the epipole e1 is the zero eigenvector of ET .
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4 Fundamental Matrix

4.1 Fundamental Matrix

When we do not know the internal parameters of these stereo cameras, we can not backpro-
ject the image points to their normalized image planes. But we have:

(1P1) = K1(
1P̂1)

(2P2) = K2(
2P̂2)

where K1 and K2 are 3 × 3 matrix. So, according to Equation 3, we have

(1P1)
TK−T

1 EK−1
2 (2P2) = 0

Let F = K−T
1 EK2, we have

(1P1)
TF(2P2) = 0

where (1P1) and (2P2) are image coordinates on their own coordinate systems. We call the
matrix F Fundamental Matrix. Similar to the Essential matrix, the two epipoles e1 and e2

are the zero eigenvectors of FT and F, respectively, and the two epipolar lines are given
by F(2P2) and FT (1P1), respectively. Actually, we can show rank(F) = 2 and F has seven
independent parameters.

Furthermore, suppose we know the two projection matrices for the two cameras, i.e.,

(1Z)(1P1) = M1(
1P) = [M11 m1]P

(2Z)(2P2) = M2(
1P) = [M21 m2]P

where P = [X,Y, Z, 1]T = [X, 1]T in the world coordinate system. We can easily write:

(1Z)(1P1) = M11X + m1

(2Z)(2P2) = M21X + m2

Eliminating X, we have:

(2Z)(2P2) − (1Z)M21M
−1
11 (1P1) = m2 − M21M

−1
11 m1

Let m = m2 − M21M
−1
11 m1, and noticing [m]×m = 0, we have:

[m]×((2Z)(2P2) − (1Z)M21M
−1
11 (1P1)) = 0

Let Z = (1Z)/(2Z), we have

[m]×ZM21M
−1
11 (1P1) = [m]×(2P2)

Multiplying 2P T
2 on both sides, and noticing (2P2)

T [m]×(2P2) = 0, we have

(2P2)
T [m]×M21M

−1
11 (1P1) = 0

here
FT = [m]×M21M

−1
11
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4.2 Stereo Weak Calibration

For any given corresponding pair of image points, p1 = [u1, v1]
T and p2 = [u2, v2]

T , we can
write:

[
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After re-organizing the order, we can write:
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when we have a set of corresponding points, i.e., {(p
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2 ), i = 1, . . . , N}, we have,
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Obviously, Fij can be solved in a least square sense up to a scale, i.e., the Fundamental
matrix F can be estimated up to a scale. We say here we can calibrate the stereo cameras
weakly.

5 Image Rectification

As shown in Figure 4, we pick up a plane Π to texture map the two images to this plane,
which is parallel to the baseline O1O2, such that the two epipolar lines l1 and l2 are colinear
and are aligned to a scan line, i.e., the epipolar lines become the rows of the images on the
rectified image plane. We call this procedure rectification. Obviously, affine transformation
can not make it (i.e., map Π1 and Π2 to Π1 and Π2). The rectified images are produced by
a reprojection operation (a Homography). For a given pixel p1 and p2 in the original two
image planes, we construct new pixels on the rectified plane by intersecting the line O1p1

and O2p2 with the rectified plane. It is perspective reprojection, which has more degrees of
freedom than affine.

[Question]: Why do the two epipolar lines become colinear in the rectified plane?
[Answer]: Since the rectified plane is parallel to the baseline, the intersection of the

epipolar plane with the rectified image will be a line. Since the two images share the same
rectified plane, the two epipolar lines will be colinear.

7



Π1

Π2

Π1 Π2

p1

p2

l1
l2

p1 p2

l1 l2

e

P

e

O O1

1 2

2

Figure 4: Image Rectification: selecting a plane which is parallel to the baseline and texture
map the two images to this rectified image plane. Notice that the two epipolar lines become
a colinear scan line in the rectified plane.

Obviously, the selection of such a rectified plane can be arbitrary as long as it is parallel
to the baseline. In practise, we can choose the one the minimizes the distortion of the
reprojection. After the rectified plane is selected, for each image, all image pixels are texture
mapped to the rectified plane to get the corresponding rectified image.

By rectification, epipolar lines are replaced by scan lines, and we will only have horizontal
disparity on both rectified images for each 3D point. So, the depth of 3D points could be
easily estimated given such a disparity map.

Then the question is “how can we get such a disparity map?”

6 Stereo Matching

6.1 Matching Ambiguity

Matching ambiguity will induce incorrect reconstruction. Building accurate matching is a
critical but challenging problem in stereo.

6.2 Correlation

We have described the correlation-based method in previous lectures.

C(d) =
1

|w1 − w̄1|

1

|w2 − w̄2|
(w1 − w̄1)

T (w2 − w̄2)

Obviously, −1 ≤ C ≤ 1.
The problem of correlation-based matching is the foreshortening problem. Due to the

foreshortening effect, it would be risky to calculate the correlation of two small windows, as
shown in Figure 6.
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Figure 6: The foreshortening effect that induces problem for correlation.

6.3 Dynamic Programming and Ordering Constraints

Matching one single point of two images is quite noisy, since the there could be many potential
matches for a single point. To reduce the ambiguity, we should take advantage of the spatial
relationship among image features. For example, we may think of matching a set of points
along an epipolar line all together instead of just one single image point. In many cases,
we can assume the order of the feature points along the two epipolar line are the same, as
shown in Figure 7. Apparently, such an observation is only valid for convex surfaces.

Using rectified images, we want to match a set of edge points on a scan line in one image
against another set of edge points on the corresponding scan line in the other image. This
is, we have a set of point A = {p

(1)
i , i = 1, . . . , N} on the scan line in the left image, and

B = {p
(2)
i , i = 1, . . . ,M}. The problem is to find a match between these two set, i.e., for any

point p
(1)
i , to determine a match point p

(2)
j . Since each point in A may match to any point

in B, there will have NM possibilities of matching point set.
Is there any clever solution to such an exponential task? Let’s represent it by a graph.

A node Gij represents a match between the i-th point p
(1)
i in A and the j-th point p

(2)
j in B.

In the graph, we also link any node in the layer Gi and the next layer Gi+1. For example, we

can link G11 and G23, it mean that p
(1)
1 matches to p

(2)
1 and p

(1)
2 matches p

(2)
3 . The weight of

the link L(G11, G23), i.e., W (G11, G23), means the matching between the interval [p
(1)
1 p

(1)
2 ] in
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Figure 7: The Ordering Constraint: the order of the feature points along the two epipolar
line are the same.

one image and the interval [p
(2)
1 p

(2)
3 ] on the other image. The better the matching, the large

the weight. Using this graph representation, the matching problem become the problem of
finding the path from the first layer G1 to the last layer GN such that the summation of
weights on the path is maximized, as shown in Figure 8. This problem can be efficiently
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Figure 8: Matching a set of point can be formulated as a Dynamic Programming problem

solved by the dynamic programming technique in O(N 3).
Note: Many problem can be solved by the dynamic programming technique. For exam-

ple, the dynamic time warping problem in speech recognition, the hidden state estimation
problem in the Hidden Markov Model (HMM), active contour tracking problem, etc.
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6.4 Multi-Scale Edge Matching

Multi-scale approaches are widely used in computer vision, since it has very sound expla-
nation in human vision. To enhance the robustness and reduce the computational load,
multi-scale approach could be used in stereo matching.

• Use a set of Gaussian filters with different scales to find zero-crossing points of the
rectified images

• Compute zero-crossing positions within a row (epipolar line)

• Match zero-crossing points at coarse resolution by comparing their orientations and
strength

• Refine disparity estimates by matching at finer scales
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