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Warm up …
Given a directed graphical model
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Wake up !
Given a HMM: p(Zi|Xi) and p(Xt|Xt-1)
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x2 xk

xt-1 xt

Prove:
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Interesting problems (i)

??

Super-resolution
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p
– Given a low-res image, can you recover a high-res image?
– To make it feasible, you may be given a set of training 

pairs of low-res and high-res images.
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Interesting problems (ii)

Capturing body motion from video
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Capturing body motion from video
– Given a video sequence, you need to estimate the 

articulated body motion from the video.

Outline
Markov network representation
Three issues

f h dd bl– Inferring hidden variables
– Calculating evidence 
– Learning Markov networks

Inference
– Exact inference

A i i f
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– Approximate inference

Applications
– Super-resolution
– Capturing body articulation
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Representations
Undirected graphical models
– G(V, E), v ∈V represents a random variable x, e 
∈E indicate the relation of two random variables;

– Each r.v. xi has a prior ψi(xi);
– Each undirected link (between xi and xj) is 

associated with a potential function ψij(xi, xj);
– v∈V, N(v) means the neighborhood of v;
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( g
We can combine undirected and directed 
graphical models.

Markov Network
Undirected 

links

Directed 
links
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Three issues
Inferring hidden variables
– Given a Markov network Λ
– To infer the hidden variable of the evidence p(X|Z, Λ)p( | )

Calculating evidence
– Given a Markov network Λ
– To calculate the likelihood of the evidence p(Z| Λ)
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Learning Markov networks
– Given a set of training data {Z1,…,Zn}
– To find the best model ∏
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Λ=Λ
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To be covered 
The inference problem is the key among the three
– Why?

L t’ di– Let’s discuss …

We will focus on inference in this lecture
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An example

x1 x2 x3
x4

x5
x6

Given the above model, with 
p(z |x ) ψ (x )

z1 z2 z3 z4 z5 z6

11

– p(zi|xi), ψi(xi)

– ψ12(x1,x2), ψ23(x2,x3), ψ34(x3,x4), ψ45(x4,x5), ψ46(x4,x6)

To solve 
– p(x3|z1,z2,z3,z4,z5,z6) 

An example
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“message” x2 x3
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What do we learn from the Ex.?

x5
M ( )

x1 x2
x3 x4 x6

M12(x2) M23(x3) M43(x3)

M54(x4)

M64(x4)
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z1 z2 z3 z4 z5 z6

What do we learn from the Ex.?
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neighbors from received messages                  
likelihood local                  

×
×
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Sum-Product Algorithm

∫ ∏ ⎟⎟
⎞

⎜⎜
⎛

= dxxMxxxxzpxM )()()()|()( ψψ∫ ∏ ⎟⎟
⎠

⎜⎜
⎝

=
∈kx

k
ikNj

kjkikkikkkkiki dxxMxxxxzpxM
\)(

)(),()()|()( ψψ

Message passing
xk xiψik(xi, xk)
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Message passingk

Mki(xi)
zk

Properties
Properties of “belief propagation”
– When the network is not loopy, the algorithm is exact;

Wh n th n t rk i l p th inf r n n b d n b– When the network is loopy, the inference can be done by 
iterating the message passing procedures; 

– In this case, the inference is not exact, 
– and it is not clear how good is the approximation.
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Application: Super-resolution
Bill Freeman (ICCV’99)
– X: high-frequency data

Z mid fr q n d t– Z: mid-frequency data
– “scene”: the high-frequency components
– “evidence”: the mid-freq of the low-res image input
– The “scene” is decomposed by a network of scene 

patches; and each scene patch is associated with an 
evidence patch 
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– Learning p(z|x) from training samples

scene patch

evidence patch

Results (Freeman)

Iteration of B.P. to obtain

actual high-res

actual high-freq

+

Low-res input

Iteration of B.P. to obtain 
high-frequency data

Recovered 
high-res image
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Results (Freeman)

Training 
data 
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Variational Inference
We want to infer
It is difficult, because of the networked structure.
We perform probabilistic variational analysis
The idea is to find an optimal approximation            of         

, such that the Kullback-Leibler (KL) divergence 
of these two distribution is minimized:
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Mean Field Theory
When we choose a full factorization variation:

We end up with a very interesting result: a set of fixed point 
equations:
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This is very similar to the Mean Field theory in statistical physics.

Computational Paradigm

Three factors affect the posterior of a node:
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Three factors affect the posterior of a node:
– Local prior
– Neighborhood prior
– Local likelihood
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Application: body tracking
Capturing body articulation (Wu et al.)
– X: the motion of body parts
– Z: image features (e.g., edges)
– The motion of body parts are constrained and 

correlated
– Specifying ψ(xi,xj)
– modeling p(z|x) explicitly
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Dynamic Markov Network
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Mean Field Iterations
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We are still investigating the convergence property of mean field algorithms
But our empirical study shows that it converges very fast, generally, less than 
five iterations.

Application: body tracking
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Application: body tracking
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Summary
Markov networks contain undirected edges in the 
graph to model the non-casual correlation
I f i th k f l i M k t kInference is the key of analyzing Markov networks
– Exact inference 
– Approximate inference

Two inference techniques were introduced here:
– Belief propagation

V i i l i f
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– Variational inference

Two applications
– Super-resolution
– Capturing articulated body motion


